On functions of finite analytical complexity
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 1-16

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct examples of polynomials and analytic functions of any predetermined finite analytical complexity $n$. We obtain an estimate of the order of derivative of the differential-algebraic criteria for membership in the class $Cl_n$ of functions of analytical complexity not higher than $n$. We find uniform estimates for finite values $d_n$ of the analytic spectrum $\{d_n\}$ for systems of differential-algebraic equations of fixed order of derivative $\delta$.
@article{MMO_2022_83_1_a0,
     author = {M. A. Stepanova},
     title = {On functions of finite analytical complexity},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a0/}
}
TY  - JOUR
AU  - M. A. Stepanova
TI  - On functions of finite analytical complexity
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 1
EP  - 16
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a0/
LA  - ru
ID  - MMO_2022_83_1_a0
ER  - 
%0 Journal Article
%A M. A. Stepanova
%T On functions of finite analytical complexity
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 1-16
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a0/
%G ru
%F MMO_2022_83_1_a0
M. A. Stepanova. On functions of finite analytical complexity. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a0/