On functions of finite analytical complexity
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 1-16
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct examples of polynomials and analytic functions of any predetermined finite analytical complexity $n$. We obtain an estimate of the order of derivative of the differential-algebraic criteria for membership in the class $Cl_n$
of functions of analytical complexity not higher than $n$. We find uniform estimates for finite values $d_n$
of the analytic spectrum $\{d_n\}$ for systems of differential-algebraic equations of fixed order of derivative $\delta$.
@article{MMO_2022_83_1_a0,
author = {M. A. Stepanova},
title = {On functions of finite analytical complexity},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {1--16},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a0/}
}
M. A. Stepanova. On functions of finite analytical complexity. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a0/