Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2021_82_2_a4, author = {A. V. Tsvetkova and A. I. Shafarevich}, title = {The wave equation with symmetric velocity on the hybrid manifold obtained by gluing a ray to a three-dimensional sphere}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {369--392}, publisher = {mathdoc}, volume = {82}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a4/} }
TY - JOUR AU - A. V. Tsvetkova AU - A. I. Shafarevich TI - The wave equation with symmetric velocity on the hybrid manifold obtained by gluing a ray to a three-dimensional sphere JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2021 SP - 369 EP - 392 VL - 82 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a4/ LA - ru ID - MMO_2021_82_2_a4 ER -
%0 Journal Article %A A. V. Tsvetkova %A A. I. Shafarevich %T The wave equation with symmetric velocity on the hybrid manifold obtained by gluing a ray to a three-dimensional sphere %J Trudy Moskovskogo matematičeskogo obŝestva %D 2021 %P 369-392 %V 82 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a4/ %G ru %F MMO_2021_82_2_a4
A. V. Tsvetkova; A. I. Shafarevich. The wave equation with symmetric velocity on the hybrid manifold obtained by gluing a ray to a three-dimensional sphere. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 2, pp. 369-392. http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a4/
[1] B. S. Pavlov, M. D. Faddeev, “Model svobodnykh elektronov i zadacha rasseyaniya”, TMF, 55:2 (1983), 257–268 | MR
[2] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmalit, M., 2005
[3] A. V. Tsvetkova, A. I. Shafarevich, “Asimptotika resheniya volnovogo uravneniya s radialno-simmetrichnoi skorostyu na prosteishem dekorirovannom grafe s proizvolnymi granichnymi usloviyami v tochke skleiki”, Matem. zametki, 107:3 (2020), 442–453 | MR | Zbl
[4] A. V. Tsvetkova, A. I. Shafarevich, “Lokalizovannoe asimptoticheskoe reshenie volnovogo uravneniya s peremennoi skorostyu na prosteishem dekorirovannom grafe”, Trudy MIAN, 308, 2020, 265–275 | Zbl
[5] A. I. Allilueva, A. I. Shafarevich, “Localized asymptotic solutions of the wave equation with variable velocity on the simplest graphs”, Russ. J. Math. Phys., 24:3 (2017), 279–289 | DOI | MR | Zbl
[6] G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, 186, AMS, Providence, RI, 2013 | MR | Zbl
[7] “J. Brüning, V. A. Geyler”, J. Math. Phys., 44 (2003), 371–405 | DOI | MR | Zbl
[8] A. I. Shafarevich, A. V. Tsvetkova, “Localized asymptotic solution of the wave equation with a radially symmetric velocity on a simplest decorated graph”, Russ. J. Math. Phys., 25:3 (2018), 333–344 | DOI | MR | Zbl