The wave equation with symmetric velocity on the hybrid manifold obtained by gluing a ray to a three-dimensional sphere
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 2, pp. 369-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2021_82_2_a4,
     author = {A. V. Tsvetkova and A. I. Shafarevich},
     title = {The wave equation with symmetric velocity on the hybrid manifold obtained by gluing a ray to a three-dimensional sphere},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {369--392},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a4/}
}
TY  - JOUR
AU  - A. V. Tsvetkova
AU  - A. I. Shafarevich
TI  - The wave equation with symmetric velocity on the hybrid manifold obtained by gluing a ray to a three-dimensional sphere
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 369
EP  - 392
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a4/
LA  - ru
ID  - MMO_2021_82_2_a4
ER  - 
%0 Journal Article
%A A. V. Tsvetkova
%A A. I. Shafarevich
%T The wave equation with symmetric velocity on the hybrid manifold obtained by gluing a ray to a three-dimensional sphere
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 369-392
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a4/
%G ru
%F MMO_2021_82_2_a4
A. V. Tsvetkova; A. I. Shafarevich. The wave equation with symmetric velocity on the hybrid manifold obtained by gluing a ray to a three-dimensional sphere. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 2, pp. 369-392. http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a4/

[1] B. S. Pavlov, M. D. Faddeev, “Model svobodnykh elektronov i zadacha rasseyaniya”, TMF, 55:2 (1983), 257–268 | MR

[2] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmalit, M., 2005

[3] A. V. Tsvetkova, A. I. Shafarevich, “Asimptotika resheniya volnovogo uravneniya s radialno-simmetrichnoi skorostyu na prosteishem dekorirovannom grafe s proizvolnymi granichnymi usloviyami v tochke skleiki”, Matem. zametki, 107:3 (2020), 442–453 | MR | Zbl

[4] A. V. Tsvetkova, A. I. Shafarevich, “Lokalizovannoe asimptoticheskoe reshenie volnovogo uravneniya s peremennoi skorostyu na prosteishem dekorirovannom grafe”, Trudy MIAN, 308, 2020, 265–275 | Zbl

[5] A. I. Allilueva, A. I. Shafarevich, “Localized asymptotic solutions of the wave equation with variable velocity on the simplest graphs”, Russ. J. Math. Phys., 24:3 (2017), 279–289 | DOI | MR | Zbl

[6] G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, 186, AMS, Providence, RI, 2013 | MR | Zbl

[7] “J. Brüning, V. A. Geyler”, J. Math. Phys., 44 (2003), 371–405 | DOI | MR | Zbl

[8] A. I. Shafarevich, A. V. Tsvetkova, “Localized asymptotic solution of the wave equation with a radially symmetric velocity on a simplest decorated graph”, Russ. J. Math. Phys., 25:3 (2018), 333–344 | DOI | MR | Zbl