Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 2, pp. 313-327.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2021_82_2_a1,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {313--327},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a1/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 313
EP  - 327
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a1/
LA  - ru
ID  - MMO_2021_82_2_a1
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 313-327
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a1/
%G ru
%F MMO_2021_82_2_a1
Kh. A. Khachatryan; H. S. Petrosyan. Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 2, pp. 313-327. http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a1/

[1] L. G. Arabadzhyan, “Odnorodnoe dvukratnoe uravnenie Vinera–Khopfa s simmetricheskim yadrom v konservativnom sluchae”, Matem. zametki, 106:1 (2019), 3–12 | MR | Zbl

[2] L. G. Arabadzhyan, G. L. Arabadzhyan, “O netrivialnoi razreshimosti kratnogo odnorodnogo uravneniya Vinera–Khopfa v konservativnom sluchae i ob uravnenii Paierlsa”, TMF, 204:1 (2020), 142–150 | MR | Zbl

[3] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. anal., 22, VINITI, M., 1984, 175–244 | MR

[4] I. Ya. Arefeva, “Skatyvayuschiesya resheniya polevykh uravnenii na neekstremalnykh branakh i v $p$-adicheskikh strunakh”, Trudy MIAN, 245, 2004, 47–54 | Zbl

[5] V. S. Vladimirov, Ya. I. Volovich, “O nelineinom uravnenii dinamiki v teorii $p$-adicheskoi struny”, TMF, 138:3 (2004), 355–368 | MR | Zbl

[6] N. B. Engibaryan, “Ob odnoi zadache nelineinogo perenosa izlucheniya”, Astrofizika, 2:1 (1966), 31–36

[7] L. V. Zhukovskaya, “Iteratsionnyi metod resheniya nelineinykh integralnykh uravnenii, opisyvayuschikh rollingovye resheniya v teorii strun”, TMF, 146:3 (2006), 402–409 | MR

[8] A. N. Kolmogorov, V. S. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[9] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR

[10] A. G. Sergeev, Kh. A. Khachatryan, “O razreshimosti odnogo klassa nelineinykh integralnykh uravnenii v zadache rasprostraneniya epidemii”, Tr. MMO, 80, no. 1, 2019, 113–131 | Zbl

[11] Kh. A. Khachatryan, “O razreshimosti nekotorykh klassov nelineinykh integralnykh uravnenii v teorii $p$-adicheskoi struny”, Izv. RAN. Ser. matem, 82:2 (2018), 172–193 | MR | Zbl

[12] Kh. A. Khachatryan, “O razreshimosti odnoi granichnoi zadachi v $p$-adicheskoi teorii strun”, Tr. MMO, 79, no. 1, 2018, 117–132 | Zbl

[13] Kh. A. Khachatryan, “Suschestvovanie i edinstvennost resheniya odnoi granichnoi zadachi dlya integralnogo uravneniya svertki s monotonnoi nelineinostyu”, Izv. RAN. Ser. matem, 84:4 (2020), 198–207 | MR | Zbl

[14] Kh. A. Khachatryan, A. S. Petrosyan, M. O. Avetisyan, “Voprosy razreshimosti odnogo klassa nelineinykh integralnykh uravnenii tipa svertki v $\mathbb{R}^n$”, Tr. IMM UrO RAN, 24, no. 3, 2018, 247–262

[15] A. Kh. Khachatryan, Kh. A. Khachatryan, “O nekotorykh voprosakh razreshimosti nelineinogo statsionarnogo uravneniya Boltsmana v ramkakh BGK-modeli”, Tr. MMO, 77, no. 1, 2016, 103–130 | Zbl

[16] A. Kh. Khachatryan, Kh. A. Khachatryan, “O razreshimosti nekotorykh nelineinykh integralnykh uravnenii v zadachakh rasprostraneniya epidemii”, Tr. MIAN, 306, 2019, 287–303 | Zbl

[17] “I. Ya. Aref'eva, B. G. Dragović, I. V. Volovich”, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR

[18] C. Atkinson, G. E. Reuter, “Deterministic epidemic waves”, Math. Proc. Cambridge Philos. Soc., 80:2 (1976), 315–330 | DOI | MR | Zbl

[19] Cercignani C., The Boltzmann equation and its applications, Springer-Verlag, New York, 1988 | MR | Zbl

[20] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biology, 6:2 (1978), 109–130 | DOI | MR | Zbl

[21] O. Diekmann, “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Diff. equations, 33:1 (1979), 58–73 | DOI | MR | Zbl

[22] A. Kh. Khachatryan, Kh. A. Khachatryan, “Solvability of a class of nonlinear pseudo-differential equations in $\mathbb{R}^n$”, $p$-Adic Numbers, Ultrametric Anal. Appl., 10:2 (2018), 90–99 | DOI | MR | Zbl

[23] Kh. A. Khachatryan, A. Zh. Narimanyan, A. Kh. Khachatryan, “On mathematical modelling of temporial spatial spread of epidemics”, Math. Model. Nat. Phenom., 15:6 (2020) | MR | Zbl

[24] Villani C., “Cercignani's conjecture is sometimes true and always almost true”, Comm. Math. Phys., 234:3 (2003), 455–490 | DOI | MR | Zbl