The asymptotic behaviour of cocycles over flows
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 175-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2021_82_1_a9,
     author = {M. E. Lipatov},
     title = {The asymptotic behaviour of cocycles over flows},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {175--184},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a9/}
}
TY  - JOUR
AU  - M. E. Lipatov
TI  - The asymptotic behaviour of cocycles over flows
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 175
EP  - 184
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a9/
LA  - ru
ID  - MMO_2021_82_1_a9
ER  - 
%0 Journal Article
%A M. E. Lipatov
%T The asymptotic behaviour of cocycles over flows
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 175-184
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a9/
%G ru
%F MMO_2021_82_1_a9
M. E. Lipatov. The asymptotic behaviour of cocycles over flows. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 175-184. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a9/

[1] Goldsheid I. Ya., Margulis G. A., “Pokazateli Lyapunova proizvedeniya sluchainykh matrits”, UMN, 44:5 (269) (1989), 13–60 | MR

[2] Kaimanovich V. A., “Pokazateli Lyapunova, simmetricheskie prostranstva i multiplikativnaya ergodicheskaya teorema dlya poluprostykh grupp Li”, Zap. nauchn. sem. LOMI, 164, 1987, 30–46

[3] Lipatov M. E., Stepin A. M., Multiplikativnaya ergodicheskaya teorema dlya kotsiklov, udovletvoryayuschikh usloviyu $\ln\|A(t,\cdot)\|\in L_1$, Dep. v VINITI 30.05.2016, No 75-V2016

[4] Oseledets V. I., “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Tr. MMO, 19, 1968, 179–210 | Zbl

[5] Rokhlin V. A., “Izbrannye voprosy metricheskoi teorii dinamicheskikh sistem”, UMN, 4:2 (30) (1949), 57–128 | MR | Zbl

[6] Shneiberg I. Ya., “Nuli integralov vdol traektorii ergodicheskikh sistem”, Funkts. analiz i ego pril., 19:2 (1985), 92–93 | MR | Zbl

[7] Atkinson G., “Recurrence of co-cycles and random walks”, J. London Math. Soc. (2), 13:3 (1976), 486–488 | DOI | MR | Zbl

[8] Barreira L., Pesin Y., Nonuniform hyperbolicity: Dynamics of systems with nonzero Lyapunov exponents, Cambridge University Press, Cambridge, NY, 2007 | MR | Zbl

[9] Karlsson A., Margulis G. A., “A multiplicative ergodic theorem and nonpositively curved spases”, Comm. Math. Phys., 208:1 (1999), 107–123 | DOI | MR | Zbl

[10] Kingman J. F. C., “The ergodic theory of subadditive stochastic processes”, J. Roy. Statist. Soc. Ser. B, 30:3 (1968), 499–510 | MR | Zbl

[11] Kuczma M., An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, 2nd ed., Birkhäuser, Basel, 2009 | MR

[12] Mañé R., “Lyapunov exponents and stable manifolds for compact transformations”, Lecture Notes in Math., 1007, Springer, Berlin, 1983, 522–577 | DOI | MR

[13] Raghunathan M. S., “A proof of Oseledec's multiplicative ergodic theorem”, Israel J. Math., 32:4 (1979), 356–362 | DOI | MR | Zbl

[14] Ruelle D., “Characteristic exponents and invariant manifolds in Hilbert space”, Ann. Math. (2), 115:2 (1982), 243–290 | DOI | MR | Zbl

[15] Thieullen P., “Fibrés dynamiques asymptotiquement compacts exposants de Lyapunov. Entropie. Dimension”, Ann. Inst. H. Poincaré, 4:1 (1987), 49–97 | DOI | MR | Zbl