Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2021_82_1_a6, author = {V. V. Ryzhikov}, title = {Compact families and typical entropy invariants of measure-preserving actions}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {137--145}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a6/} }
TY - JOUR AU - V. V. Ryzhikov TI - Compact families and typical entropy invariants of measure-preserving actions JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2021 SP - 137 EP - 145 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a6/ LA - ru ID - MMO_2021_82_1_a6 ER -
V. V. Ryzhikov. Compact families and typical entropy invariants of measure-preserving actions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 137-145. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a6/
[1] Buzzi J., “Piecewise isometries have zero topological entropy”, Ergodic Theory Dynam. Systems, 21:5 (2001), 1371–1377 | DOI | MR | Zbl
[2] Chaika J., Davis D., The typical measure preserving transformation is not an interval exchange transformation, arXiv: 1812.10425 | MR
[3] Chaika J., Eskin A., “Self-joinings for 3-IET”, J. Eur. Math. Soc. (to appear) | MR
[4] Glasner E., Thouvenot J.-P., Weiss B., “On some generic classes of ergodic measure preserving transformations”, Trudy MMO, 82, no. 1, 2021, 19–44 | MR
[5] del Junco A., “Disjointness of measure-preserving transformations, minimal self-joinings and category”, Prog. Math., 10 (1981), 81–89 | DOI | MR | Zbl
[6] Katok A. B., Stepin A. M., “Metricheskie svoistva gomeomorfizmov, sokhranyayuschikh meru”, UMN, 25:2 (152) (1970), 193–220 | MR | Zbl
[7] Katok A., “Interval exchange transformations and some special flows are not mixing”, Israel J. Math., 35:4 (1980), 301–310 | DOI | MR | Zbl
[8] Kushnirenko A. G., “O metricheskikh invariantakh tipa entropii”, UMN, 22:5 (137) (1967), 57–65 | MR | Zbl
[9] Oseledets V. I., “O spektre ergodicheskikh avtomorfizmov”, DAN SSSR, 168:5 (1966), 1009–1011 | MR | Zbl
[10] Oseledets V. I., “Avtomorfizm s prostym i nepreryvnym spektrom bez gruppovogo svoistva”, Matem. zametki, 5:3 (1969), 323–326 | Zbl
[11] Oseledets V. I., “Dve neizomorfnye dinamicheskie sistemy s odinakovym prostym nepreryvnym spektrom”, Funkts. analiz i ego pril., 5:3 (1971), 75–79 | MR
[12] Ryzhikov V. V., “Faktory, rang i vlozhenie tipichnogo $\mathbb{Z}^n$-deistviya v $\mathbb{R}^n$-potok”, UMN, 61:4 (370) (2006), 197–198 | MR | Zbl
[13] Ryzhikov V. V., “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | MR | Zbl
[14] Ryzhikov V. V., “Ob asimmetrii kratnykh asimptoticheskikh svoistv ergodicheskikh deistvii”, Matem. zametki, 96:3 (2014), 432–439 | MR | Zbl
[15] Ryzhikov V. V., “O sokhranyayuschikh meru preobrazovaniyakh ranga odin”, Trudy MMO, 81, no. 2, 2020, 281–318 | Zbl
[16] Stepin A. M., “O svoistvakh spektrov ergodicheskikh dinamicheskikh sistem s lokalno kompaktnym vremenem”, DAN SSSR, 169:4 (1966), 773–776 | Zbl
[17] Stepin A. M., “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 801–834 | MR
[18] Stepin A. M., Eremenko A. M., “Needinstvennost vklyucheniya v potok i obshirnost tsentralizatora dlya tipichnogo sokhranyayuschego meru preobrazovaniya”, Matem. sb., 195:12 (2004), 95–108 | Zbl
[19] Stepin A. M., Tikhonov S. V., “Group actions: entropy, mixing, spectra and generic properties”, Topology, Geometry, and Dynamics: Rokhlin Memorial, Series Contemporary Mathematics, 772, AMS, Providence, R.I., 2021 (to appear) | MR