Control with point observation for a parabolic problem with convection
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 259-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a control problem related to the mathematical model of temperature control in industrial hothouses. It is based on a one-dimensional non-selfadjoint parabolic equation with variable coefficients. Defining an optimal control as a minimizing function for a quadratic functional, we study its qualitative properties and the structure of the set of admissible temperature functions. We prove controllability for a certain family of control functions.
@article{MMO_2019_80_2_a7,
     author = {I. V. Astashova and D. A. Lashin and A. V. Filinovskii},
     title = {Control with point observation for a parabolic problem with convection},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {259--274},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a7/}
}
TY  - JOUR
AU  - I. V. Astashova
AU  - D. A. Lashin
AU  - A. V. Filinovskii
TI  - Control with point observation for a parabolic problem with convection
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 259
EP  - 274
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a7/
LA  - ru
ID  - MMO_2019_80_2_a7
ER  - 
%0 Journal Article
%A I. V. Astashova
%A D. A. Lashin
%A A. V. Filinovskii
%T Control with point observation for a parabolic problem with convection
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 259-274
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a7/
%G ru
%F MMO_2019_80_2_a7
I. V. Astashova; D. A. Lashin; A. V. Filinovskii. Control with point observation for a parabolic problem with convection. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 259-274. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a7/

[1] Astashova I. V., Filinovskiy A. V., “On properties of minimizers of a control problem with time-distributed functional related to parabolic equations”, Opuscula Math., 39:5 (2019), 595–609 | DOI | MR

[2] Astashova I. V., Filinovskii A. V., Kondratiev V. A., Muravei L. A., “Some problems in the qualitative theory of differential equations”, J. Nat. Geom., 23:1–2 (2003), 1–126 | MR | Zbl

[3] I. V. Astashova (red.), Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, Yuniti-Dana, M., 2012

[4] Astashova I. V., Lashin D. A., Filinovskii A. V., “Ob odnoi modeli optimalnogo upravleniya temperaturnym rezhimom teplitsy”, Vestn. SamU. Estestvennonauchn. ser., 2016, no. 3–4, 14–23

[5] Astashova I., Filinovskiy A., Lashin D., “On a model of maintaining the optimal temperature in greenhouse”, Funct. Differ. Equ., 23:3–4 (2016), 97–108 | MR

[6] Astashova I., Filinovskiy A., Lashin D., “On optimal temperature control in hothouses”, Proc. Int. Conf. on Numerical Analysis and Applied Mathematics 2016, Proceedings of 14th International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2016) (19–25 September 2016, Rhodes, Greece), AIP Conf. Proc., 1863, eds. Th. Simos, Ch. Tsitouras, 2017, 4–8 | MR

[7] Astashova I. V., Filinovskiy A. V., “On the dense controllability for the parabolic problem with time-distributed functional”, Tatra Mt. Math. Publ., 71 (2018), 9–25 | MR | Zbl

[8] Butkovskii A. G., “Optimalnye protsessy v sistemakh s raspredelennymi parametrami”, Avtom. i telemekh., 22:1 (1961), 17–26 | Zbl

[9] Butkovsky A. G., Egorov A. I., Lurie K. A., “Optimal control of distributed systems (a survey of Soviet publications)”, SIAM J. Control, 6:3 (1968), 437–476 | DOI | MR | Zbl

[10] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978

[11] Egorov Yu. V., “Nekotorye zadachi teorii optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 3:5 (1963), 887–904 | Zbl

[12] Evans L. K., Uravneniya s chastnymi proizvodnymi, Universitetskaya ser., 7, Tamara Rozhkovskaya, Novosibirsk, 2003

[13] Farag M. H., Talaat T. A., Kamal E. M., “Existence and uniqueness solution of a class of quasilinear parabolic boundary control problems”, Cubo, 15:2 (2013), 111–119 | DOI | MR | Zbl

[14] Friedman A., “Optimal control for parabolic equations”, J. Math. Anal. Appl., 18:3 (1967), 479–491 | DOI | Zbl

[15] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, UMN, 17:3 (1962), 3–146

[16] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[17] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Fizmatlit, M., 1973

[18] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972

[19] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Fizmatlit, M., 1987

[20] Lurie K. A., Applied optimal control theory of distributed systems, Springer, Berlin, 2013 | MR

[21] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Fizmatlit, M., 1965

[22] Mazur S., “Über convexe Mengen in linearen normierte Räumen”, Studia Math., 4, no. 1, 1933, 70–84 | DOI

[23] Riss F., Sekelfalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979

[24] Saut J.-C., Scheurer B., “Unique continuation for some evolution equations”, J. Diff. Equations, 66:1 (1987), 118–139 | DOI | MR | Zbl

[25] Titchmarsh E. C., “The zeros of certain integral functions”, Proc. London Math. Soc. (2), 25 (1926), 283–302 | DOI | MR | Zbl

[26] Tröltzsch F., Optimal control of partial differential equations. Theory, methods and applications, Graduate Studies in Math., 112, AMS, Providence, 2010 | DOI | MR | Zbl