On a class of singular Sturm--Liouville problems
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 247-257

Voir la notice de l'article provenant de la source Math-Net.Ru

A formally self-adjoint boundary value problem is under consideration. It corresponds to the formal differential equation $ -(y'/r)'+q{}y=p{}f$, where $ r$ and $ p$ are generalized densities of two Borel measures which do not have common atoms and $ q$ is a generalized function from some class related to the density $ r.$ A self-adjoint operator generated by this boundary value problem is defined. The main term of the spectral asymptotics is established in the case when $ r$ and $ p$ are self-similar and $ q=0.$
@article{MMO_2019_80_2_a6,
     author = {A. A. Vladimirov},
     title = {On a class of singular {Sturm--Liouville} problems},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {247--257},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a6/}
}
TY  - JOUR
AU  - A. A. Vladimirov
TI  - On a class of singular Sturm--Liouville problems
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 247
EP  - 257
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a6/
LA  - ru
ID  - MMO_2019_80_2_a6
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%T On a class of singular Sturm--Liouville problems
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 247-257
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a6/
%G ru
%F MMO_2019_80_2_a6
A. A. Vladimirov. On a class of singular Sturm--Liouville problems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 247-257. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a6/