On a class of singular Sturm--Liouville problems
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 247-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

A formally self-adjoint boundary value problem is under consideration. It corresponds to the formal differential equation $ -(y'/r)'+q{}y=p{}f$, where $ r$ and $ p$ are generalized densities of two Borel measures which do not have common atoms and $ q$ is a generalized function from some class related to the density $ r.$ A self-adjoint operator generated by this boundary value problem is defined. The main term of the spectral asymptotics is established in the case when $ r$ and $ p$ are self-similar and $ q=0.$
@article{MMO_2019_80_2_a6,
     author = {A. A. Vladimirov},
     title = {On a class of singular {Sturm--Liouville} problems},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {247--257},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a6/}
}
TY  - JOUR
AU  - A. A. Vladimirov
TI  - On a class of singular Sturm--Liouville problems
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 247
EP  - 257
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a6/
LA  - ru
ID  - MMO_2019_80_2_a6
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%T On a class of singular Sturm--Liouville problems
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 247-257
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a6/
%G ru
%F MMO_2019_80_2_a6
A. A. Vladimirov. On a class of singular Sturm--Liouville problems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 247-257. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a6/

[1] Eckhardt J., Teschl G., “Sturm–Liouville operators with measure-valued coefficients”, J. Anal. Math., 120:1 (2013), 151–224 | DOI | MR | Zbl

[2] Freiberg U., “Refinement of the spectral asymptotics of generalized Krein Feller operators”, Forum Math., 23:2 (2011), 427–445 | DOI | MR | Zbl

[3] Neiman–zade M. I., Shkalikov A. A., “Operatory Shredingera s singulyarnymi potentsialami iz prostranstv multiplikatorov”, Matem. zametki, 66:5 (1999), 723–733 | DOI | Zbl

[4] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | Zbl

[5] Sheipak I. A., “O konstruktsii i nekotorykh svoistvakh samopodobnykh funktsii v prostranstvakh $L_p[0,1]$”, Matem. zametki, 81:6 (2007), 924–938 | DOI | Zbl

[6] Solomyak M., Verbitsky E., “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl

[7] Vladimirov A. A., “O skhodimosti posledovatelnostei obyknovennykh differentsialnykh operatorov”, Matem. zametki, 75:6 (2004), 941–943 | DOI | Zbl

[8] Vladimirov A. A., Sheipak I. A., “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Matem. sb., 197:11 (2006), 13–30 | DOI | Zbl

[9] Vladimirov A. A., Sheipak I. A., “Indefinitnaya zadacha Shturma–Liuvillya dlya nekotorykh klassov samopodobnykh singulyarnykh vesov”, Tr. MIAN, 255, 2006, 88–98 | Zbl

[10] Vladimirov A. A., “K ostsillyatsionnoi teorii zadachi Shturma–Liuvillya s singulyarnymi koeffitsientami”, Zh. vych. matem. i matem. fiz., 49:9 (2009), 1609–1621 | Zbl

[11] Vladimirov A. A., Sheipak I. A., “Asimptotika sobstvennykh znachenii zadachi Shturma–Liuvillya s diskretnym samopodobnym vesom”, Matem. zametki, 88:5 (2010), 662–672 | DOI | Zbl

[12] Vladimirov A. A., Sheipak I. A., “O zadache Neimana dlya uravneniya Shturma–Liuvillya s samopodobnym vesom kantorovskogo tipa”, Funkts. analiz i ego pril., 47:4 (2013), 18–29 | DOI | Zbl