An explicit form for extremal functions in the embedding constant problem for Sobolev spaces
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 221-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

The embedding constants for the Sobolev spaces $ \mathring W^n_2[0;1]\hookrightarrow \mathring W^k_2[0;1]$ ($ 0\le k\le n-1$) are studied. A relationship between the embedding constants and the norms of the functionals $ f\mapsto f^{(k)}(a)$ in the space $ \mathring W^n_2[0;1]$ is given. An explicit form of the functions $ g_{n,k}\in \mathring W^n_2[0;1]$ on which these functionals attain their norm is found. These functions are also extremals for the embedding constants. A connection between the embedding constants and the Legendre polynomials is put forward. A detailed study is made of the embedding constants for $ k=3$ and $ k=5$: explicit formulas for extreme points are obtained, global maximum points calculated, and the values of the sharp embedding constants is given. A link between the embedding constants and some class of spectral problems with distribution coefficients is established.
@article{MMO_2019_80_2_a5,
     author = {I. A. Sheipak and T. A. Garmanova},
     title = {An explicit form for extremal functions in the embedding constant problem for {Sobolev} spaces},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {221--246},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a5/}
}
TY  - JOUR
AU  - I. A. Sheipak
AU  - T. A. Garmanova
TI  - An explicit form for extremal functions in the embedding constant problem for Sobolev spaces
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 221
EP  - 246
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a5/
LA  - ru
ID  - MMO_2019_80_2_a5
ER  - 
%0 Journal Article
%A I. A. Sheipak
%A T. A. Garmanova
%T An explicit form for extremal functions in the embedding constant problem for Sobolev spaces
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 221-246
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a5/
%G ru
%F MMO_2019_80_2_a5
I. A. Sheipak; T. A. Garmanova. An explicit form for extremal functions in the embedding constant problem for Sobolev spaces. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 221-246. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a5/

[1] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd–vo MGU, M., 1976

[2] Magaril–Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[3] Kalyabin G. A., “Tochnye otsenki dlya proizvodnykh funktsii iz klassov Soboleva $\mathring{W}^{r}_2(-1;1)$”, Tr. MIAN, 269, 2010, 143–149 | Zbl

[4] Mukoseeva E. V., Nazarov A. I., “O simmetrii ektremali v nekotorykh teoremakh vlozheniya”, Zap. nauchn. sem. POMI, 425, 2014, 35–45

[5] Böttcher A., Widom H., “From Toeplitz eigenvalues through Green's kernels to higher-order Wirtinger–Sobolev inequalities”, The extended field of operator theory, Oper. Theory Adv. Appl., 171, Birkhäuser, Basel, 2007, 73–87 | DOI | MR

[6] Kholshevnikov K. V., Shaidulin V. Sh., “O svoistvakh integralov ot mnogochlena Lezhandra”, Vestnik SPbGU. Ser. 1, 1(59):1 (2014), 55–67