Spectral analysis and representation of solutions of integro-differential equations with fractional exponential kernels
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 197-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present paper is to study the asymptotic behavior of solutions of integro-differential equations based on spectral analysis of their symbols. To this end, we obtain representations of strong solutions of these equations in the form of a sum of terms corresponding to the real and nonreal parts of the spectrum of operator functions that are the symbols of these equations. The resulting representations are new for this class of integro-differential equations.
@article{MMO_2019_80_2_a4,
     author = {V. V. Vlasov and N. A. Rautian},
     title = {Spectral analysis and representation of solutions of integro-differential equations with fractional exponential kernels},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {197--220},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a4/}
}
TY  - JOUR
AU  - V. V. Vlasov
AU  - N. A. Rautian
TI  - Spectral analysis and representation of solutions of integro-differential equations with fractional exponential kernels
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 197
EP  - 220
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a4/
LA  - ru
ID  - MMO_2019_80_2_a4
ER  - 
%0 Journal Article
%A V. V. Vlasov
%A N. A. Rautian
%T Spectral analysis and representation of solutions of integro-differential equations with fractional exponential kernels
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 197-220
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a4/
%G ru
%F MMO_2019_80_2_a4
V. V. Vlasov; N. A. Rautian. Spectral analysis and representation of solutions of integro-differential equations with fractional exponential kernels. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 197-220. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a4/

[1] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970

[2] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977

[3] Lykov A. V., Problema teplo- i massoobmena, Nauka i tekhnika, Minsk, 1976

[4] Gurtin M. E., Pipkin A. C., “A general theory of heat conduction with finite wave speeds”, Arch. Rat. Mech. Anal., 31:2 (1968), 113–126 | DOI | MR | Zbl

[5] Eremenko A., Ivanov S., “Spectra of the Gurtin–Pipkin type equations”, SIAM J. Math. Anal., 43:5 (2011), 2296–2306 | DOI | MR | Zbl

[6] Vlasov V. V., Gavrikov A. A., Ivanov S. A., Knyazkov D. Yu., Samarin V. A., Shamaev A. S., “Spektralnye svoistva kombinirovannykh sred”, Sovremennye problemy matematiki i mekhaniki, 5:1 (2009), 134–155

[7] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | DOI | Zbl

[8] Vlasov V. V., Rautian N. A., “Well-defined solvability and spectral analysis of abstract hyperbolic integrodifferential equations”, J. Math. Sci. (N. Y.), 179:3 (2011), 390–414 | DOI | MR | Zbl

[9] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, Sovrem. matem. Fundam. naprav., 58, 2015, 22–42

[10] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost volterrovykh integro–differentsialnykh uravnenii v gilbertovom prostranstve”, Differents. uravneniya, 52:9 (2016), 1168–1177 | DOI | Zbl

[11] Vlasov V. V., Wu J., “Solvability and spectral analysis of abstract hyperbolic equations with delay”, Funct. Differ. Equ., 16:4 (2009), 751–768 | MR | Zbl

[12] Vlasov V. V., Rautian N. A., “O svoistvakh reshenii integrodifferentsialnykh uravnenii, voznikayuschikh v teorii teplomassoobmena”, Tr. MMO, 75, no. 2, 2014, 219–243 | Zbl

[13] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno–differentsialnykh uravnenii, MAKS Press, M., 2016

[14] Pandolfi L., “The controllability of the Gurtin–Pipkin equation: a cosine operator approach”, Appl. Math. Optim., 52:2 (2005), 143–165 | DOI | MR | Zbl

[15] Lions J. L., Magenes E., Non-homogeneous boundary value problems and applications, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR

[16] Desch W., Miller R. K., “Exponential stabilization of Volterra integro-differential equations in Hilbert space”, J. Differential Equations, 70:3 (1987), 366–389 | DOI | MR | Zbl

[17] Prüss J., Evolutionary integral equations and applications, Monographs in Math., 87, Birkhäuser Verlag, Basel, 1993 | DOI | MR | Zbl

[18] Wu J. H., “Semigroup and integral form of class of partial differential equations with infinite delay”, Differ. Integr. Equations, 4:6 (1991), 1325–1351 | MR | Zbl

[19] Amendola G., Fabrizio M., Golden J. M., Thermodynamics of materials with memory. Theory and applications, Springer, New York, 2012 | MR | Zbl

[20] Vlasov V. V., Rautian N. A., “Issledovanie operatornykh modelei, voznikayuschikh v teorii vyazkouprugosti”, Sovrem. matem. Fundam. naprav., 64, no. 1, 2018, 60–73 | Zbl

[21] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz volterrovykh integrodifferentsialnykh uravnenii s singulyarnymi yadrami”, Doklady RAN, 482:6 (2018), 635–638 | DOI

[22] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i predstavlenie reshenii volterrovykh integro–differentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, Differents. uravneniya, 55:4 (2019), 574–587 | DOI | Zbl

[23] Vlasov V. V., Rautian N. A., “Issledovanie operatornykh modelei, voznikayuschikh v zadachakh nasledstvennoi mekhaniki”, Tr. sem. im. I. G. Petrovskogo, 32, 2019, 91–110