Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2019_80_2_a3, author = {N. F. Valeev and Ya. T. Sultanaev and \'E. A. Nazirova}, title = {Spectral properties of differential operators with oscillating coefficients}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {179--195}, publisher = {mathdoc}, volume = {80}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a3/} }
TY - JOUR AU - N. F. Valeev AU - Ya. T. Sultanaev AU - É. A. Nazirova TI - Spectral properties of differential operators with oscillating coefficients JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2019 SP - 179 EP - 195 VL - 80 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a3/ LA - ru ID - MMO_2019_80_2_a3 ER -
%0 Journal Article %A N. F. Valeev %A Ya. T. Sultanaev %A É. A. Nazirova %T Spectral properties of differential operators with oscillating coefficients %J Trudy Moskovskogo matematičeskogo obŝestva %D 2019 %P 179-195 %V 80 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a3/ %G ru %F MMO_2019_80_2_a3
N. F. Valeev; Ya. T. Sultanaev; É. A. Nazirova. Spectral properties of differential operators with oscillating coefficients. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 179-195. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a3/
[1] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[2] Fedoryuk M. F., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983
[3] Eastham M. S. P., Grudniewicz C. G. M., “Asymptotic theory and deficiency indices for higher-order selfadjoint differential equations”, J. London Math. Soc. (2), 24:2 (1981), 255–271 | DOI | MR | Zbl
[4] Everitt W. N., Zettl A., “Generalized symmetric ordinary differential expressions. I. The general theory”, Nieuw Arch. Wisk. (3), 27:3 (1979), 363–397 | MR | Zbl
[5] Eastham M. S. P., “Limit-circle differential expressions of the second order with an oscillating coefficient”, Quart. J. Math. Ser. 2, 24:94 (1973), 257–263 | DOI | MR | Zbl
[6] Naboko S. N., Pushnitskii A. B., “Tochechnyi spektr, lezhaschii na nepreryvnom, dlya slabo vozmuschennykh operatorov tipa Shtarka”, Funkts. analiz i ego pril., 29:4 (1995), 31–44 | Zbl
[7] Murtazin Kh. Kh., Sultanaev Ya. T., “K formulam raspredeleniya sobstvennykh chisel nepoluogranichennogo operatora Shturma–Liuvillya”, Matem. zametki, 28:4 (1980), 545–553 | Zbl
[8] Makina N. K., Nazirova E. A., Sultanaev Ya. T., “O metodakh issledovaniya asimptoticheskogo povedeniya reshenii singulyarnykh differentsialnykh uravnenii”, Matem. zametki, 96:4 (2014), 627–632 | DOI | Zbl
[9] Valeev N. F., Nazirova E. A., Sultanaev Ya. T., “O novom podkhode k izucheniyu asimptoticheskogo povedeniya reshenii singulyarnykh differentsialnykh uravnenii”, Ufimsk. matem. zhurn., 7:3 (2015), 9–15
[10] Valeev N. F., Sultanaev Ya. T., “Ob indeksakh defekta operatora Shturma–Liuvillya s bystroostsilliruyuschim vozmuscheniem”, Doklady RAN, 374:6 (2000), 732–734 | Zbl