Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2019_80_2_a1, author = {V. A. Sadovnichii and Ya. T. Sultanaev and A. M. Akhtyamov}, title = {The finiteness of the spectrum of boundary value problems defined on a geometric graph}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {147--156}, publisher = {mathdoc}, volume = {80}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a1/} }
TY - JOUR AU - V. A. Sadovnichii AU - Ya. T. Sultanaev AU - A. M. Akhtyamov TI - The finiteness of the spectrum of boundary value problems defined on a geometric graph JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2019 SP - 147 EP - 156 VL - 80 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a1/ LA - ru ID - MMO_2019_80_2_a1 ER -
%0 Journal Article %A V. A. Sadovnichii %A Ya. T. Sultanaev %A A. M. Akhtyamov %T The finiteness of the spectrum of boundary value problems defined on a geometric graph %J Trudy Moskovskogo matematičeskogo obŝestva %D 2019 %P 147-156 %V 80 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a1/ %G ru %F MMO_2019_80_2_a1
V. A. Sadovnichii; Ya. T. Sultanaev; A. M. Akhtyamov. The finiteness of the spectrum of boundary value problems defined on a geometric graph. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 147-156. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a1/
[1] Akhtyamov A. M., “O konechnosti spektra kraevykh zadach”, Differents. uravneniya, 55:1 (2019), 138–140 | DOI | Zbl
[2] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. sem. im. I. G. Petrovskogo, 9, 1983, 140–179
[3] Shiryaev E. A., Shkalikov A. A., “Regulyarnye i vpolne regulyarnye differentsialnye operatory”, Matem. zametki, 81:4 (2007), 636–640 | DOI | Zbl
[4] Savchuk A. M., Shkalikov A. A., “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. analiz i ego pril., 44:4 (2010), 34–53 | DOI | Zbl
[5] Savchuk A. M., Shkalikov A. A., “Spektralnye svoistva kompleksnogo operatora Eiri na poluosi”, Funkts. analiz i ego pril., 51:1 (2017), 82–98 | DOI | Zbl
[6] Sadovnichii V. A., Kanguzhin B. E., “O svyazi mezhdu spektrom differentsialnogo operatora s simmetricheskimi koeffitsientami i kraevymi usloviyami”, DAN SSSR, 267:2 (1982), 310–313 | Zbl
[7] Akhtyamov A. M., “O spektre differentsialnogo operatora nechetnogo poryadka”, Matem. zametki, 101:5 (2017), 643–646 | DOI | Zbl
[8] Lang P., Locker J., “Spectral theory of two-point differential operators determined by $-D^2$. I. Spectral properties”, J. Math. Anal. Appl, 141:2 (1989), 538–558 | DOI | MR | Zbl
[9] Locker J., Eigenvalues and completeness for regular and simply irregular two-point differential operators, Mem. Amer. Math. Soc., 195, no. 911, 2008 | MR
[10] Kalmenov T. Sh., Suragan D., “Opredelenie struktury spektra regulyarnykh kraevykh zadach dlya differentsialnykh uravnenii metodom antiapriornykh otsenok V. A. Ilina”, Doklady RAN, 423:6 (2008), 730–732 | Zbl
[11] Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M., “Vyrozhdennye kraevye usloviya dlya zadachi Shturma–Liuvillya na geometricheskom grafe”, Differents. uravneniya, 55:4 (2019), 514–523 | DOI | Zbl
[12] Lidskii V. B., Sadovnichii V. A., “Regulyarizovannye summy kornei odnogo klassa tselykh funktsii”, Funkts. analiz i ego pril., 1:2 (1967), 52–59
[13] Lidskii V. B., Sadovnichii V. A., “Asimptoticheskie formuly dlya kornei odnogo klassa tselykh funktsii”, Matem. sb., 75:4 (1968), 558–566 | Zbl