The finiteness of the spectrum of boundary value problems defined on a geometric graph
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 147-156
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider boundary value problems on a geometric graph with a polynomial occurrence of spectral parameter in the differential equation. It has previously been shown (see A. M. Akhtyamov [Differ. Equ.55 (2019), no. 1, pp. 142-144]) that a boundary value problem for one differential equation whose characteristic equation has simple roots cannot have a finite spectrum, and a boundary value problem for one differential equation can have any given finite spectrum when the characteristic polynomial has multiple roots. In this paper, we obtain a similar result for differential equations defined on a geometric graph. We show that a boundary value problem on a geometric graph cannot have a finite spectrum if all its characteristic equations have simple roots, and a boundary value problem has a finite spectrum if at least one characteristic equation has multiple roots. We also give results showing that a boundary value problem can have any given finite spectrum.
@article{MMO_2019_80_2_a1,
author = {V. A. Sadovnichii and Ya. T. Sultanaev and A. M. Akhtyamov},
title = {The finiteness of the spectrum of boundary value problems defined on a geometric graph},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {147--156},
publisher = {mathdoc},
volume = {80},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a1/}
}
TY - JOUR AU - V. A. Sadovnichii AU - Ya. T. Sultanaev AU - A. M. Akhtyamov TI - The finiteness of the spectrum of boundary value problems defined on a geometric graph JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2019 SP - 147 EP - 156 VL - 80 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a1/ LA - ru ID - MMO_2019_80_2_a1 ER -
%0 Journal Article %A V. A. Sadovnichii %A Ya. T. Sultanaev %A A. M. Akhtyamov %T The finiteness of the spectrum of boundary value problems defined on a geometric graph %J Trudy Moskovskogo matematičeskogo obŝestva %D 2019 %P 147-156 %V 80 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a1/ %G ru %F MMO_2019_80_2_a1
V. A. Sadovnichii; Ya. T. Sultanaev; A. M. Akhtyamov. The finiteness of the spectrum of boundary value problems defined on a geometric graph. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 147-156. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a1/