Homogenization over the spatial variable in nonlinear parabolic systems
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 63-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider boundary value problems for nonlinear parabolic systems whose coefficients are periodic rapidly oscillating functions of the spatial variable. Results on the closeness of time-periodic solutions of an original boundary value problem and the problem homogenized over the spatial variable are presented. The dynamic properties of these equations are studied in near-critical cases of the equilibrium stability problem. Algorithms for constructing the asymptotics of periodic solutions and for calculating the coefficients of the so-called normal forms are developed. In particular, we show that an infinite process of bifurcation and disappearance of a stable cycle can occur with increasing oscillation degree of the coefficients. In addition, we study some classes of problems with a deviation in the spatial variable as well as with a large diffusion coefficient. Logistic delay equations with diffusion and logistic equations with a deviation in the spatial variable, which are important in applications, are studied as examples. The coefficients of these equations are assumed to be rapidly oscillating in the spatial variable.
@article{MMO_2019_80_1_a1,
     author = {S. A. Kashchenko},
     title = {Homogenization over the spatial variable in nonlinear parabolic systems},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {63--86},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a1/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Homogenization over the spatial variable in nonlinear parabolic systems
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 63
EP  - 86
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a1/
LA  - ru
ID  - MMO_2019_80_1_a1
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Homogenization over the spatial variable in nonlinear parabolic systems
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 63-86
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a1/
%G ru
%F MMO_2019_80_1_a1
S. A. Kashchenko. Homogenization over the spatial variable in nonlinear parabolic systems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 63-86. http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a1/

[1] Bakhvalov N. S., “Osrednenie differentsialnykh uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, DAN SSSR, 221:3 (1975), 516–519 | Zbl

[2] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh: Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984

[3] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, 5, North-Holland Publishing Co., Amsterdam–New York, 1978 | MR | Zbl

[4] Kleptsyna M. L., Pyatnitskii A. L., “Usrednenie sluchainoi nestatsionarnoi zadachi konvektsii–diffuzii”, UMN, 57:4(346) (2002), 95–118 | DOI | Zbl

[5] Bourgeat A., Jurak M., Piatnitski A. L., “Averaging a transport equation with small diffusion and oscillating velocity”, Math. Methods Appl. Sci., 26:2 (2003), 95–117 | DOI | MR | Zbl

[6] Marušić-Paloka E., Piatnitski A. L., “Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection”, J. London Math. Soc. (2), 72:2 (2005), 391–409 | DOI | MR | Zbl

[7] Allaire G., Pankratova I., Piatnitski A., “Homogenization of a nonstationary convection-diffusion equation in a thin rod and in a layer”, SeMA Journal, 2012, no. 58, 53–95 | DOI | MR | Zbl

[8] Zhikov V. V., Oleinik O. A., Kozlov S. M., Usrednenie differentsialnykh operatorov, Nauka, M., 1993

[9] Levenshtam V. B., “Asimptoticheskoe integrirovanie parabolicheskikh zadach s bolshimi vysokochastotnymi slagaemymi”, Sib. matem. zhurnal, 46:4 (2005), 805–821 | Zbl

[10] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Gostekhizdat, M., 1955 | MR

[11] Mitropolskii Yu. A., Metod usredneniya v nelineinoi mekhanike, Naukova dumka, Kiev, 1971

[12] Mitropolskii Yu. A., Nestatsionarnye protsessy v nelineinykh kolebatelnykh sistemakh, Izd-vo AN USSR, Kiev, 1955

[13] Volosov V. M., Morgunov B. I., Metod osredneniya v teorii nelineinykh kolebatelnykh sistem, Izd–vo Mosk. un–ta, M., 1971 | Zbl

[14] Kolesov Yu. S., Kolesov V. S., Fedik I. I., Avtokolebaniya v sistemakh s raspredelennymi parametrami, Naukova dumka, Kiev, 1979

[15] Kolesov Yu. S., Maiorov V. V., “Novyi metod issledovaniya ustoichivosti reshenii lineinykh differentsialnykh uravnenii s blizkimi k postoyannym pochti periodicheskimi koeffitsientami”, Differents. uravneniya, 10:10 (1974), 1778–1788 | Zbl

[16] Kaschenko S. A., “Asimptotika ustanovivshikhsya rezhimov parabolicheskikh uravnenii s bystro ostsilliruyuschimi po vremeni koeffitsientami i peremennoi oblastyu opredeleniya”, Ukraïnskii matem. zhurnal, 39:5 (1987), 578–582 | Zbl

[17] Kaschenko S. A., “Issledovanie ustoichivosti reshenii lineinykh parabolicheskikh uravnenii s blizkimi k postoyannym koeffitsientami i maloi diffuziei”, Tr. seminara im. I. G. Petrovskogo, 15, M., 1991, 128–155 | Zbl

[18] Akhmanov S. A., Vorontsov M. A., “Neustoichivosti i struktury v kogerentnykh nelineino-opticheskikh sistemakh, okhvachennykh dvumernoi obratnoi svyazyu”, Nelineinye volny: dinamika i evolyutsiya, Sbornik nauchnykh trudov, eds. A. V. Gaponov–Grekhov, M. I. Rabinovich, Nauka, M., 1989, 228–238

[19] Grigorieva E. V., Haken H., Kashchenko S. A., Pelster A., “Travelling wave dynamics in a nonlinear interferometer with spatial field transformer in feedback”, Phys. D: Nonlinear Phenomena, 125:1–2 (1999), 123–141 | DOI | Zbl

[20] Marsden D., Mak–Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR

[21] Sanders J. A., Verhulst F., Murdock J., Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, 59, 2nd ed., Springer, New York, 2007 | MR | Zbl

[22] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988

[23] Shchepakina E., Sobolev V., Mortell M. P., Singular perturbations: Introduction to system order reduction methods with applications, Lect. Notes in Math., 2114, Springer, Cham, 2014 | DOI | MR | Zbl

[24] Gurli S. A., Sou Dzh. V.-Kh., Vu Dzh. Kh., “Nelokalnye uravneniya reaktsii-diffuzii s zapazdyvaniem: biologicheskie modeli i nelineinaya dinamika”, Sovrem. matem. Fundam. naprav., 1, 2003, 84–120

[25] Kaschenko S. A., “Prostranstvenno–neodnorodnye struktury v prosteishikh modelyakh s zapazdyvaniem i diffuziei”, Matem. modelirovanie, 2:9 (1990), 49–69 | Zbl

[26] Kaschenko S. A., “Lokalnaya dinamika prostranstvenno–raspredelennogo logisticheskogo uravneniya s zapazdyvaniem i bolshim koeffitsientom perenosa”, Differents. uravneniya, 50:1 (2014), 73–78 | DOI | MR | Zbl

[27] Kaschenko S. A., Polstyanov A. S., “Asimptotika periodicheskikh reshenii avtonomnykh parabolicheskikh uravnenii s bystro ostsilliruyuschimi koeffitsientami i uravnenii s bolshimi koeffitsientami diffuzii”, Model. i analiz inform. sistem, 19:1 (2012), 7–23

[28] Kaschenko S. A., “O bifurkatsiyakh pri malykh vozmuscheniyakh v logisticheskom uravnenii s zapazdyvaniem”, Model. i analiz inform. sistem, 24:2 (2017), 168–185 | DOI

[29] Grigorieva E. V., Kashchenko S. A., “Stability of equilibrium state in a laser with rapidly oscillating delay feedback”, Phys. D: Nonlinear Phenomena, 291 (2015), 1–7 | DOI | MR | Zbl

[30] Kaschenko S. A., “Dinamika sistem s zapazdyvaniem i bystro ostsilliruyuschimi koeffitsientami”, Differents. uravneniya, 54:1 (2018), 15–29 | DOI

[31] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[32] Vasileva A. B., Butuzov V. F., Singulyarno vozmuschennye uravneniya v kriticheskikh sluchayakh, Izd–vo MGU, M., 1978 | MR

[33] Butuzov V. F., Levashova N. T., “O sisteme tipa reaktsiya–diffuziya–perenos v sluchae maloi diffuzii i bystrykh reaktsii”, Zhurnal vychisl. matem. i matem. fiz., 43:7 (2003), 1005–1017 | Zbl