Homogenization over the spatial variable in nonlinear parabolic systems
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 63-86
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider boundary value problems for nonlinear parabolic systems whose coefficients are periodic rapidly oscillating functions of the spatial variable. Results on the closeness of time-periodic solutions of an original boundary value problem and the problem homogenized over the spatial variable are presented. The dynamic properties of these equations are studied in near-critical cases of the equilibrium stability problem. Algorithms for constructing the asymptotics of periodic solutions and for calculating the coefficients of the so-called normal forms are developed. In particular, we show that an infinite process of bifurcation and disappearance of a stable cycle can occur with increasing oscillation degree of the coefficients. In addition, we study some classes of problems with a deviation in the spatial variable as well as with a large diffusion coefficient. Logistic delay equations with diffusion and logistic equations with a deviation in the spatial variable, which are important in applications, are studied as examples. The coefficients of these equations are assumed to be rapidly oscillating in the spatial variable.
@article{MMO_2019_80_1_a1,
     author = {S. A. Kashchenko},
     title = {Homogenization over the spatial variable in nonlinear parabolic systems},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {63--86},
     year = {2019},
     volume = {80},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a1/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Homogenization over the spatial variable in nonlinear parabolic systems
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 63
EP  - 86
VL  - 80
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a1/
LA  - ru
ID  - MMO_2019_80_1_a1
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Homogenization over the spatial variable in nonlinear parabolic systems
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 63-86
%V 80
%N 1
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a1/
%G ru
%F MMO_2019_80_1_a1
S. A. Kashchenko. Homogenization over the spatial variable in nonlinear parabolic systems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 63-86. http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a1/

[1] Bakhvalov N. S., “Osrednenie differentsialnykh uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, DAN SSSR, 221:3 (1975), 516–519 | Zbl

[2] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh: Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984

[3] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, 5, North-Holland Publishing Co., Amsterdam–New York, 1978 | MR | Zbl

[4] Kleptsyna M. L., Pyatnitskii A. L., “Usrednenie sluchainoi nestatsionarnoi zadachi konvektsii–diffuzii”, UMN, 57:4(346) (2002), 95–118 | DOI | Zbl

[5] Bourgeat A., Jurak M., Piatnitski A. L., “Averaging a transport equation with small diffusion and oscillating velocity”, Math. Methods Appl. Sci., 26:2 (2003), 95–117 | DOI | MR | Zbl

[6] Marušić-Paloka E., Piatnitski A. L., “Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection”, J. London Math. Soc. (2), 72:2 (2005), 391–409 | DOI | MR | Zbl

[7] Allaire G., Pankratova I., Piatnitski A., “Homogenization of a nonstationary convection-diffusion equation in a thin rod and in a layer”, SeMA Journal, 2012, no. 58, 53–95 | DOI | MR | Zbl

[8] Zhikov V. V., Oleinik O. A., Kozlov S. M., Usrednenie differentsialnykh operatorov, Nauka, M., 1993

[9] Levenshtam V. B., “Asimptoticheskoe integrirovanie parabolicheskikh zadach s bolshimi vysokochastotnymi slagaemymi”, Sib. matem. zhurnal, 46:4 (2005), 805–821 | Zbl

[10] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Gostekhizdat, M., 1955 | MR

[11] Mitropolskii Yu. A., Metod usredneniya v nelineinoi mekhanike, Naukova dumka, Kiev, 1971

[12] Mitropolskii Yu. A., Nestatsionarnye protsessy v nelineinykh kolebatelnykh sistemakh, Izd-vo AN USSR, Kiev, 1955

[13] Volosov V. M., Morgunov B. I., Metod osredneniya v teorii nelineinykh kolebatelnykh sistem, Izd–vo Mosk. un–ta, M., 1971 | Zbl

[14] Kolesov Yu. S., Kolesov V. S., Fedik I. I., Avtokolebaniya v sistemakh s raspredelennymi parametrami, Naukova dumka, Kiev, 1979

[15] Kolesov Yu. S., Maiorov V. V., “Novyi metod issledovaniya ustoichivosti reshenii lineinykh differentsialnykh uravnenii s blizkimi k postoyannym pochti periodicheskimi koeffitsientami”, Differents. uravneniya, 10:10 (1974), 1778–1788 | Zbl

[16] Kaschenko S. A., “Asimptotika ustanovivshikhsya rezhimov parabolicheskikh uravnenii s bystro ostsilliruyuschimi po vremeni koeffitsientami i peremennoi oblastyu opredeleniya”, Ukraïnskii matem. zhurnal, 39:5 (1987), 578–582 | Zbl

[17] Kaschenko S. A., “Issledovanie ustoichivosti reshenii lineinykh parabolicheskikh uravnenii s blizkimi k postoyannym koeffitsientami i maloi diffuziei”, Tr. seminara im. I. G. Petrovskogo, 15, M., 1991, 128–155 | Zbl

[18] Akhmanov S. A., Vorontsov M. A., “Neustoichivosti i struktury v kogerentnykh nelineino-opticheskikh sistemakh, okhvachennykh dvumernoi obratnoi svyazyu”, Nelineinye volny: dinamika i evolyutsiya, Sbornik nauchnykh trudov, eds. A. V. Gaponov–Grekhov, M. I. Rabinovich, Nauka, M., 1989, 228–238

[19] Grigorieva E. V., Haken H., Kashchenko S. A., Pelster A., “Travelling wave dynamics in a nonlinear interferometer with spatial field transformer in feedback”, Phys. D: Nonlinear Phenomena, 125:1–2 (1999), 123–141 | DOI | Zbl

[20] Marsden D., Mak–Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR

[21] Sanders J. A., Verhulst F., Murdock J., Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, 59, 2nd ed., Springer, New York, 2007 | MR | Zbl

[22] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988

[23] Shchepakina E., Sobolev V., Mortell M. P., Singular perturbations: Introduction to system order reduction methods with applications, Lect. Notes in Math., 2114, Springer, Cham, 2014 | DOI | MR | Zbl

[24] Gurli S. A., Sou Dzh. V.-Kh., Vu Dzh. Kh., “Nelokalnye uravneniya reaktsii-diffuzii s zapazdyvaniem: biologicheskie modeli i nelineinaya dinamika”, Sovrem. matem. Fundam. naprav., 1, 2003, 84–120

[25] Kaschenko S. A., “Prostranstvenno–neodnorodnye struktury v prosteishikh modelyakh s zapazdyvaniem i diffuziei”, Matem. modelirovanie, 2:9 (1990), 49–69 | Zbl

[26] Kaschenko S. A., “Lokalnaya dinamika prostranstvenno–raspredelennogo logisticheskogo uravneniya s zapazdyvaniem i bolshim koeffitsientom perenosa”, Differents. uravneniya, 50:1 (2014), 73–78 | DOI | MR | Zbl

[27] Kaschenko S. A., Polstyanov A. S., “Asimptotika periodicheskikh reshenii avtonomnykh parabolicheskikh uravnenii s bystro ostsilliruyuschimi koeffitsientami i uravnenii s bolshimi koeffitsientami diffuzii”, Model. i analiz inform. sistem, 19:1 (2012), 7–23

[28] Kaschenko S. A., “O bifurkatsiyakh pri malykh vozmuscheniyakh v logisticheskom uravnenii s zapazdyvaniem”, Model. i analiz inform. sistem, 24:2 (2017), 168–185 | DOI

[29] Grigorieva E. V., Kashchenko S. A., “Stability of equilibrium state in a laser with rapidly oscillating delay feedback”, Phys. D: Nonlinear Phenomena, 291 (2015), 1–7 | DOI | MR | Zbl

[30] Kaschenko S. A., “Dinamika sistem s zapazdyvaniem i bystro ostsilliruyuschimi koeffitsientami”, Differents. uravneniya, 54:1 (2018), 15–29 | DOI

[31] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[32] Vasileva A. B., Butuzov V. F., Singulyarno vozmuschennye uravneniya v kriticheskikh sluchayakh, Izd–vo MGU, M., 1978 | MR

[33] Butuzov V. F., Levashova N. T., “O sisteme tipa reaktsiya–diffuziya–perenos v sluchae maloi diffuzii i bystrykh reaktsii”, Zhurnal vychisl. matem. i matem. fiz., 43:7 (2003), 1005–1017 | Zbl