On asymptotic formulae in some sum-product questions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 271-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain a series of asymptotic formulae in the sum-product phenomena over the prime field $ \mathbb{F}_p$. In the proofs we use the usual incidence theorems in $ \mathbb{F}_p$, as well as the growth result in $ \mathrm {SL}_2 (\mathbb{F}_p)$ due to Helfgott. Here are some of our applications: a new bound for the number of the solutions to the equation $ (a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $ \,a_i, a'_i\in A$, $ A$ is an arbitrary subset of $ \mathbb{F}_p$, a new effective bound for multilinear exponential sums of Bourgain, an asymptotic analogue of the Balog–Wooley decomposition theorem, growth of $ p_1(b) + 1/(a+p_2 (b))$, where $ a,b$ runs over two subsets of $ \mathbb{F}_p$, $ p_1,p_2 \in \mathbb{F}_p [x]$ are two non-constant polynomials, new bounds for some exponential sums with multiplicative and additive characters.
@article{MMO_2018_79_2_a5,
     author = {I. D. Shkredov},
     title = {On asymptotic formulae in some sum-product questions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {271--334},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a5/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On asymptotic formulae in some sum-product questions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2018
SP  - 271
EP  - 334
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a5/
LA  - ru
ID  - MMO_2018_79_2_a5
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On asymptotic formulae in some sum-product questions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2018
%P 271-334
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a5/
%G ru
%F MMO_2018_79_2_a5
I. D. Shkredov. On asymptotic formulae in some sum-product questions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 271-334. http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a5/

[1] Aksoy Yazici E., Murphy B., Rudnev M., Shkredov I. D., “Growth estimates in positive characteristic via collisions”, IMRN, 2017:23 (2017), 7148–7189 | DOI | MR

[2] Balog A., Wooley T., “A low-energy decomposition theorem”, The Quarterly Journal of Mathematics, 68:1 (2017), 207–226 | MR | Zbl

[3] Berndt B. C., Evans R. J., Williams K. S., Gauss and Jacobi sums, John Wiley Sons, Inc., New York, 1998 | MR | Zbl

[4] Bourgain J., “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl

[5] Bourgain J., “Estimates on exponential sums related to the Diffie-Hellman distributions”, Geom. Funct. Anal., 15:1 (2005), 1–34 | DOI | MR | Zbl

[6] Bourgain J., “Multilinear exponential sums in prime fields under optimal entropy condition on the sources”, Geom. Funct. Anal., 18:5 (2009), 1477–1502 | DOI | MR | Zbl

[7] Bourgain J., “A modular Szemerédi-Trotter theorem for hyperbolas”, C.R. Math. Acad. Sci. Paris, 350:17–18 (2012), 793–796, arXiv: 1208.4008v1 [math.CO] | DOI | MR | Zbl

[8] Bourgain J., Chang M.-C., “Exponential sum estimates over subgroups and almost subgroups of $\mathbb{Z}_Q^*$, where $Q$ is composite with few prime factors”, Geom. Funct. Anal., 16:2 (2006), 327–366 | DOI | MR | Zbl

[9] Bourgain J., Gamburd A., “Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_2(\mathbb{F}_p)$”, Ann. of Math. (2), 167:2 (2008), 625–642 | DOI | MR | Zbl

[10] Bourgain J., Garaev M. Z., “On a variant of sum-product estimates and explicit exponential sum bounds in prime fields”, Math. Proc. Cambridge Philos. Soc., 146:1 (2009), 1–21 | DOI | MR | Zbl

[11] Burgein Zh., Garaev M. Z., “Summa mnozhestv, obrazovannykh obratnymi elementami v polyakh prostogo poryadka, i polilineinye summy Kloostermana”, Izv. RAN. Ser. matem., 78:4 (2014), 19–72 | DOI | Zbl

[12] Bourgain J., Glibichuk A. A., Konyagin S. V., “Estimates for the number of sums and products and for exponential sums in fields of prime order”, J. London Math. Soc. (2), 73:2 (2006), 380–398 | DOI | MR | Zbl

[13] Bourgain J., Katz N., Tao T., “A sum-product estimate in finite fields and applications”, Geom. Funct. Anal., 14:1 (2004), 27–57 | DOI | MR | Zbl

[14] Erdős P., Szemerédi E., “On sums and products of integers”, Studies in pure mathematics, Birkhauser, Basel, 1983, 213–218 | MR

[15] Garaev M. Z., “The sum-product estimate for large subsets of prime fields”, Proc. Amer. Math. Soc., 136:8 (2008), 2735–2739 | DOI | MR | Zbl

[16] Garaev M. Z., “Summy i proizvedeniya mnozhestv i otsenki ratsionalnykh trigonometricheskikh summ v polyakh prostogo poryadka”, UMN, 65:4(394) (2010), 5–66 | DOI | Zbl

[17] Glibichuk A. A., Konyagin S. V., “Additive properties of product sets in fields of prime order”, Additive combinatorics, CRM Proc. Lecture Notes, 43, AMS, Providence, RI, 2007, 279–286 | DOI | MR | Zbl

[18] Gowers W. T., “Quasirandom groups”, Combin. Probab. Comput., 17:3 (2008), 363–387 | DOI | MR | Zbl

[19] Guth L., Katz N. H., “On the Erdős distinct distances problem in the plane”, Ann. of Math. (2), 181:1 (2015), 155–190 | DOI | MR | Zbl

[20] Frobenius G., “Über Gruppencharaktere”, Sitzungsberichte der Koniglich Preußischen Akademie der Wissenschaften zu Berlin, 1896, 985–1021 | Zbl

[21] Gill N., “Quasirandom group actions”, Forum Math. Sigma, 4 (2016), e24 | DOI | MR | Zbl

[22] Helfgott H. A., “Growth and generation in $\mathrm{SL}_2(\mathbb{Z}/p\mathbb{Z})$”, Ann. of Math. (2), 167:2 (2008), 601–623 | DOI | MR | Zbl

[23] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, Cambridge, 1985 | MR | Zbl

[24] Iwaniec H., Kowalski E., Analytic number theory, AMS Colloqium Publications, 53, AMS, Providence, RI, 2004 | DOI | MR | Zbl

[25] Iosevich A., Konyagin V. S., Rudnev M., Ten V., “Combinatorial complexity of convex sequences”, Discrete Comput. Geom., 35:1 (2006), 143–158 | DOI | MR | Zbl

[26] Khinchin A. Ya., Tsepnye drobi, URSS, M., 2018

[27] Konyagin S. V., “$h$-fold sums from a set with few products”, Moscow J. Combin. Number Theory, 4:3 (2014), 14–20 | MR | Zbl

[28] Konyagin S. V., Shkredov I. D., “O summakh mnozhestv, imeyuschikh maloe proizvedenie”, Tr. MIAN, 290, 2015, 304–316 | Zbl

[29] Konyagin S. V., Shkredov I. D., “Novye rezultaty o summakh i proizvedeniyakh v $\mathbb{R}$”, Tr. MIAN, 294, 2016, 87–98 | Zbl

[30] Konyagin S. V., Shparlinski I., Character sums with exponential functions and their applications, Cambridge Tracts in Math., 136, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[31] Macourt S., “Incidence results and bounds of trilinear and quadrilinear exponential sums”, SIAM J. Discrete Math., 32:2 (2018), 815–825 | DOI | MR | Zbl

[32] Moshchevitin N. G., Murphy B., Shkredov I. D., Popular products and continued fractions, arXiv: 1808.05845

[33] Murphy B., Upper and lower bounds for rich lines in grids, 29 Sep 2017, arXiv: 1709.10438v1 [math.CO]

[34] Murphy B., Petridis G., “A second wave of expanders in finite fields”, Combinatorial and additive number theory, II, Springer Proc. Math. Stat., 220, Springer, Cham, 2017, 215–238, arXiv: 1701.01635v1 [math.CO] | DOI | MR

[35] Murphy B., Petridis G., Products of differences over arbitrary finite fields, 18 May 2017, arXiv: 1705.06581v1 [math.CO]

[36] Murphy B., Petridis G., “A point-line incidence identity in finite fields, and applications”, Moscow J. Combin. Number Theory, 6:1 (2016), 64–95 | MR | Zbl

[37] Murphy B., Petridis G., Roche-Newton O., Rudnev M., Shkredov I. D., New results on sum-product type growth over fields, 8 Feb 2017, arXiv: 1702.01003v2 [math.CO]

[38] Murphy B., Rudnev M., Shkredov I. D., Shteinikov Y. N., On the few products, many sums problem, 1 Dec 2017, arXiv: 1712.00410v1 [math.CO]

[39] Petridis G., Collinear triples and quadruples for Cartesian products in $\mathbb{F}_p^2$, 18 Oct 2016, arXiv: 1610.05620v1 [math.CO]

[40] Petridis G., Shparlinski I. E., Bounds of trilinear and quadrilinear exponential sums, 6 Sep 2016, arXiv: 1604.08469v3 [math.NT]

[41] Rédei L., Luchenhafte Polynome uber endlichen Körpern, Birkhauser Verlag, Basel, 1970 | MR

[42] Roche-Newton O., Rudnev M., Shkredov I. D., “New sum-product type estimates over finite fields”, Adv. Math., 293 (2016), 589–605 | DOI | MR | Zbl

[43] Rudnev M., “On the number of incidences between points and planes in three dimensions”, Combinatorica, 38:1 (2018), 219–254 | DOI | MR | Zbl

[44] Rudnev M., Shkredov I. D., Stevens S., On the energy variant of the sum-product conjecture, arXiv: 1607.05053

[45] Sarnak P., Xue X. X., “Bounds for multiplicities of automorphic representations”, Duke Math. J., 64:1 (1991), 207–227 | DOI | MR | Zbl

[46] Schoen T., Shkredov I. D., “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737 | DOI | MR | Zbl

[47] Shkredov I. D., “Some new inequalities in additive combinatorics”, Moscow J. Combin. Number Theory, 3:3–4 (2013), 189–239 | MR | Zbl

[48] Shkredov I. D., “Neskolko novykh rezultatov o starshikh energiyakh”, Tr. MMO, 74, no. 1, MTsNMO, M., 2013, 35–73 | Zbl

[49] Shkredov I. D., “Neskolko zamechanii k teoreme o razlozhimosti Baloga–Vuli i velichinakh $D^+$, $D^-$”, Teoriya chisel i prilozheniya, 2, Sovr. probl. matem., 24, MIAN, M., 2017, 85–103 | DOI | Zbl

[50] Shkredov I. D., Any small multiplicative subgroup is not a sumset, 3 Feb 2017, arXiv: 1702.01197v1 [math.NT]

[51] Shkredov I. D., “Some remarks on the asymmetric sum-product phenomenon”, Moscow J. Combin. Number Theory, 2018, 101–126 ; 26 May 2017, arXiv: 1705.09703v1 [math.NT] | DOI | MR

[52] Shkredov I. D., Zhelezov D., “On additive bases of sets with small product set”, IMRN, 2018:5 (2018), 1585–1599 ; (14 Jun 2016), arXiv: 1606.02320v2 [math.NT] | DOI | MR

[53] Solymosi J., “Bounding multiplicative energy by the sumset”, Adv. Math., 222:2 (2009), 402–408 | DOI | MR | Zbl

[54] Stevens S., de Zeeuw F., An improved point-line incidence bound over arbitrary fields, 7 Oct 2016, arXiv: 1609.06284v2 [math.CO] | MR

[55] Suzuki M., Group Theory, v. I, Springer-Verlag, New York, 1982 | MR | Zbl

[56] Szőnyi T., “Around Rédei's theorem”, Discrete Math., 208/209 (1999), 557–575 | MR

[57] Tao T., Vu V., Additive combinatorics, Cambridge Studies in Advanced Math., 105, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[58] Thang P., Tait M., Timmons C., Vinh L. A., “A Szemerédi-Trotter type theorem, sum-product estimates in finite quasifields, and related results”, J. Combin. Theory. Ser. A, 147 (2017), 55–74 | DOI | MR | Zbl

[59] Vinh L. A., “The Szemerédi-Trotter type theorem and the sum-product estimate in finite fields”, Eur. J. Combin., 32:8 (2011), 1177–1181 | DOI | MR | Zbl

[60] de Zeeuw F., A short proof of Rudnev's point-plane incidence bound, 8 Dec 2016, arXiv: 1612.02719v1 [math.CO]