On asymptotic formulae in some sum-product questions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 271-334
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we obtain a series of asymptotic formulae in the sum-product phenomena over the prime field $ \mathbb{F}_p$. In the proofs we use the usual incidence theorems in $ \mathbb{F}_p$, as well as the growth result in $ \mathrm {SL}_2 (\mathbb{F}_p)$ due to Helfgott. Here are some of our applications:
a new bound for the number of the solutions to the equation $ (a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $ \,a_i, a'_i\in A$, $ A$ is an arbitrary subset of $ \mathbb{F}_p$,
a new effective bound for multilinear exponential sums of Bourgain,
an asymptotic analogue of the Balog–Wooley decomposition theorem,
growth of $ p_1(b) + 1/(a+p_2 (b))$, where $ a,b$ runs over two subsets of $ \mathbb{F}_p$, $ p_1,p_2 \in \mathbb{F}_p [x]$ are two non-constant polynomials,
new bounds for some exponential sums with multiplicative and additive characters.
@article{MMO_2018_79_2_a5,
author = {I. D. Shkredov},
title = {On asymptotic formulae in some sum-product questions},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {271--334},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a5/}
}
I. D. Shkredov. On asymptotic formulae in some sum-product questions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 271-334. http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a5/