A modification of the Bloom--Graham Theorem: the introduction of weights in the complex tangent space
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 237-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2018_79_2_a3,
     author = {M. A. Stepanova},
     title = {A modification of the {Bloom--Graham} {Theorem:} the introduction of weights in the complex tangent space},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a3/}
}
TY  - JOUR
AU  - M. A. Stepanova
TI  - A modification of the Bloom--Graham Theorem: the introduction of weights in the complex tangent space
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2018
SP  - 237
EP  - 246
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a3/
LA  - ru
ID  - MMO_2018_79_2_a3
ER  - 
%0 Journal Article
%A M. A. Stepanova
%T A modification of the Bloom--Graham Theorem: the introduction of weights in the complex tangent space
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2018
%P 237-246
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a3/
%G ru
%F MMO_2018_79_2_a3
M. A. Stepanova. A modification of the Bloom--Graham Theorem: the introduction of weights in the complex tangent space. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 237-246. http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a3/

[1] Bloom T., Graham I., “On ‘type’ conditions for generic real submanifolds of $\mathbb{C}^n$”, Invent. Math., 40:3 (1977), 217–243 | DOI | MR

[2] Baouendi M. S., Ebenfelt P., Rothschild L. P., Real submanifolds in complex space and their mappings, Princeton Mathematical Serie, 47, Princeton University Press, Princeton, NJ, 1999 | MR

[3] Beloshapka V., “Automorphisms of degenerate hypersurfaces in $\mathbb C^2$ and a dimension conjecture”, Russian J. Math. Phys., 4:3 (1996), 393–396 | MR | Zbl

[4] Math. Notes, 69:2 (2001), 188–195 | DOI | DOI | MR | Zbl

[5] Kolar M., Meylan F., Zaitsev D., “Chern–Moser operators and polynomial models in CR geometry”, Adv. Math., 263 (2014), 321–356 | DOI | MR | Zbl

[6] Catlin D., “Boundary invariants of pseudoconvex domains”, Ann. of Math. (2), 120:3 (1984), 529–586 | DOI | MR | Zbl

[7] Catlin D., “Subelliptic estimates for the $\bar{\partial}$-Neumann problem on pseudoconvex domains”, Ann. of Math. (2), 126:1 (1987), 131–191 | DOI | MR | Zbl

[8] Math. Notes, 75:4 (2004), 475–488 | DOI | DOI | MR | Zbl