Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2018_79_2_a3, author = {M. A. Stepanova}, title = {A modification of the {Bloom--Graham} {Theorem:} the introduction of weights in the complex tangent space}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {237--246}, publisher = {mathdoc}, volume = {79}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a3/} }
TY - JOUR AU - M. A. Stepanova TI - A modification of the Bloom--Graham Theorem: the introduction of weights in the complex tangent space JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2018 SP - 237 EP - 246 VL - 79 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a3/ LA - ru ID - MMO_2018_79_2_a3 ER -
%0 Journal Article %A M. A. Stepanova %T A modification of the Bloom--Graham Theorem: the introduction of weights in the complex tangent space %J Trudy Moskovskogo matematičeskogo obŝestva %D 2018 %P 237-246 %V 79 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a3/ %G ru %F MMO_2018_79_2_a3
M. A. Stepanova. A modification of the Bloom--Graham Theorem: the introduction of weights in the complex tangent space. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 237-246. http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a3/
[1] Bloom T., Graham I., “On ‘type’ conditions for generic real submanifolds of $\mathbb{C}^n$”, Invent. Math., 40:3 (1977), 217–243 | DOI | MR
[2] Baouendi M. S., Ebenfelt P., Rothschild L. P., Real submanifolds in complex space and their mappings, Princeton Mathematical Serie, 47, Princeton University Press, Princeton, NJ, 1999 | MR
[3] Beloshapka V., “Automorphisms of degenerate hypersurfaces in $\mathbb C^2$ and a dimension conjecture”, Russian J. Math. Phys., 4:3 (1996), 393–396 | MR | Zbl
[4] Math. Notes, 69:2 (2001), 188–195 | DOI | DOI | MR | Zbl
[5] Kolar M., Meylan F., Zaitsev D., “Chern–Moser operators and polynomial models in CR geometry”, Adv. Math., 263 (2014), 321–356 | DOI | MR | Zbl
[6] Catlin D., “Boundary invariants of pseudoconvex domains”, Ann. of Math. (2), 120:3 (1984), 529–586 | DOI | MR | Zbl
[7] Catlin D., “Subelliptic estimates for the $\bar{\partial}$-Neumann problem on pseudoconvex domains”, Ann. of Math. (2), 126:1 (1987), 131–191 | DOI | MR | Zbl
[8] Math. Notes, 75:4 (2004), 475–488 | DOI | DOI | MR | Zbl