Symmetric differential operators of fractional order and their extensions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 209-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the description of symmetric operators and the justification of Green's formula for a fractional analogue of the Sturm–Liouville operator of order $ 2\alpha $, where $ \frac {1}{2}\alpha 1$.
@article{MMO_2018_79_2_a1,
     author = {N. E. Tokmagambetov and B. T. Torebek},
     title = {Symmetric differential operators of fractional order and their extensions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {209--219},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a1/}
}
TY  - JOUR
AU  - N. E. Tokmagambetov
AU  - B. T. Torebek
TI  - Symmetric differential operators of fractional order and their extensions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2018
SP  - 209
EP  - 219
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a1/
LA  - ru
ID  - MMO_2018_79_2_a1
ER  - 
%0 Journal Article
%A N. E. Tokmagambetov
%A B. T. Torebek
%T Symmetric differential operators of fractional order and their extensions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2018
%P 209-219
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a1/
%G ru
%F MMO_2018_79_2_a1
N. E. Tokmagambetov; B. T. Torebek. Symmetric differential operators of fractional order and their extensions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 209-219. http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a1/

[1] Dezin A. A., Obschie voprosy teorii granichnykh zadach, Nauka, M., 1980

[2] Gorbachuk V. I., Gorbachuk M. L., Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984

[3] Al-Mdallal Q. M., “On the numerical solution of fractional Sturm–Liouville problems”, Int. J. Comput. Math., 87:12 (2010), 2837–2845 | DOI | MR | Zbl

[4] Blaszczyk T., Ciesielski M., “Numerical solution of fractional Sturm–Liouville equation in integral form”, Fract. Calc. Appl. Anal., 17:2 (2014), 307–320 | DOI | MR | Zbl

[5] Płociniczak L., “Eigenvalue asymptotics for a fractional boundary-value problem”, Appl. Math. Comput., 241 (2014), 125–128 | MR

[6] Khosravian-Arab H., Dehghan M., Eslahchi M. R., “Fractional Sturm–Liouville boundary value problems in unbounded domains: theory and applications”, J. Comput. Phys., 299 (2015), 526–560 | DOI | MR | Zbl

[7] Li J., Qi J., “Eigenvalue problems for fractional differential equations with right and left fractional derivatives”, Appl. Math. Comput., 256 (2015), 1–10 | MR

[8] Dzhrbashyan M. M., “Kraevaya zadacha dlya differentsialnogo operatora drobnogo poryadka tipa Shturma–Liuvillya”, Izv. AN Arm. SSR. Ser. matem., 5:2 (1970), 71–96 | Zbl

[9] Nakhushev A. M., “Zadacha Shturma–Liuvillya dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s drobnymi proizvodnymi v mladshikh chlenakh”, Doklady AN SSSR, 234 (1977), 308–311 | Zbl

[10] Aleroev T. S., “Zadacha Shturma–Liuvillya dlya differentsialnogo uravneniya s drobnymi proizvodnymi v mladshikh chlenakh”, Differents. uravneniya, 18:2 (1982), 341–343

[11] Sedletskii A. M., “On zeros of Laplace transform of finite measure”, Integral Transform. Spec. Funct., 1:1 (1993), 51–59 | DOI | MR

[12] Ostrovskiĭ I. V., Peresyolkova I. N., “Nonasymptotic results on distributions of zeros of the function $E_{\rho}(z,\mu)$”, Anal. Math., 23:4 (1997), 283–296 | DOI | MR | Zbl

[13] Malamud M. M., Oridoroga L. L., “O nekotorykh voprosakh spektralnoi teorii obyknovennykh differentsialnykh uravnenii drobnogo poryadka”, Doklady NAN Ukrainy, 9 (1998), 39–47

[14] Aleroev T. S., “O sobstvennykh znacheniyakh odnoi kraevoi zadachi dlya differentsialnogo operatora drobnogo poryadka”, Differents. uravneniya, 36:10 (2000), 1422–1423 | Zbl

[15] Popov A. Yu., “O kolichestve veschestvennykh sobstvennykh znachenii odnoi kraevoi zadachi dlya uravneniya vtorogo poryadka s drobnoi proizvodnoi”, Fundament. i prikl. matem., 12:6 (2006), 137–155

[16] Agibalova A. V., “O polnote sistem kornevykh funktsii differentsialnogo operatora drobnogo poryadka s matrichnymi koeffitsientami”, Matem. zametki, 88:2 (2010), 317–320 | DOI

[17] Aleroev T. S., Aleroeva Kh. T., “Ob odnom klasse nesamosopryazhennykh operatorov, soputstvuyuschikh differentsialnym uravneniyam drobnogo poryadka”, Izv. vuzov. Matem., 2014, no. 10, 3–12

[18] Klimek M., Odzijewicz T., Malinowska A. B., “Variational methods for the fractional Sturm–Liouville problem”, J. Math. Anal. Appl., 416:1 (2014), 402–426 | DOI | MR | Zbl

[19] Eneeva L. M., “Kraevaya zadacha dlya differentsialnogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2015, no. 2(11), 39–44

[20] Klimek M., Agrawal O. P., “Fractional Sturm–Liouville problem”, Comput. Math. Appl., 66:5 (2013), 795–812 | DOI | MR | Zbl

[21] Isaeva L. M., Aleroev T. S., “Kachestvennye svoistva odnomernogo drobnogo differentsialnogo uravneniya advektsii-diffuzii”, Vestnik MGSU, 7 (2014), 28–33

[22] Zayernouri M., Karniadakis G. E., “Discontinuous spectral element methods for time- and space-fractional advection equations”, SIAM J. Sci. Comput., 36:4 (2014), B684–B707 | DOI | MR | Zbl

[23] Klimek M., “2D space-time fractional diffusion on bounded domain–Application of the fractional Sturm–Liouville theory”, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), 2015, 309–314 | DOI

[24] Qiu L., Deng W., Hesthaven J. S., “Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes”, J. Comput. Phys., 298 (2015), 678–694 | DOI | MR | Zbl

[25] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[26] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[27] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, North-Holland Math. Studies, 204, Elsevier Science B. V., Amsterdam, 2006 | MR | Zbl

[28] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[29] Ruzhansky M., Tokmagambetov N., “Nonharmonic analysis of boundary value problems”, Int. Math. Res. Not. IMRN, 12 (2016), 3548–3615 | DOI | MR | Zbl

[30] Delgado J., Ruzhansky M., Tokmagambetov N., “Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary”, J. Math. Pures Appl. (9), 107:6 (2017), 758–783 | DOI | MR | Zbl

[31] Ruzhansky M., Tokmagambetov N., “Nonharmonic analysis of boundary value problems without WZ condition”, Math. Model. Nat. Phenom., 12:1 (2017), 115–140 | DOI | MR | Zbl

[32] Kanguzhin B., Tokmagambetov N., “The Fourier transform and convolutions generated by a differential operator with boundary condition on a segment”, Fourier analysis, Trends Math., Birkhäuser/Springer, Cham, 2014, 235–251 | MR | Zbl

[33] Kanguzhin B., Tokmagambetov N., Tulenov K., “Pseudo-differential operators generated by a non-local boundary value problem”, Complex Var. Elliptic Equ., 60:1 (2015), 107–117 | DOI | MR | Zbl