Twistor geometry and gauge fields
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 155-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main topic of this survey article is an exposition of basics of the theory of twistors and of applications of this theory to solving equations of gauge field theory, such as, e.g., Yang–Mills equations, monopole equations, etc.
@article{MMO_2018_79_2_a0,
     author = {A. G. Sergeev},
     title = {Twistor geometry and gauge fields},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {155--207},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a0/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Twistor geometry and gauge fields
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2018
SP  - 155
EP  - 207
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a0/
LA  - ru
ID  - MMO_2018_79_2_a0
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Twistor geometry and gauge fields
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2018
%P 155-207
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a0/
%G ru
%F MMO_2018_79_2_a0
A. G. Sergeev. Twistor geometry and gauge fields. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 2, pp. 155-207. http://geodesic.mathdoc.fr/item/MMO_2018_79_2_a0/

[1] Atya M. F., “Instantony v dvukh i chetyrekh izmereniyakh”, Monopoli. Topologicheskie i variatsionnye metody, Mir, M., 1989, 231–254

[2] Atya M., “Geometriya polei Yanga–Millsa”, Geometriya i fizika uzlov, Mir, M., 1995, 79–186 | Zbl

[3] Atya M. F., Zinger I. M., “Indeks ellipticheskikh operatorov, I”, UMN, 23:5 (1968), 99–142 | Zbl

[4] Atiyah M. F., Drinfeld V. G., Hitchin N. J., Manin Yu. I., “Construction of instantons”, Phys. Lett. A, 65:3 (1978), 185–187 | DOI | MR | Zbl

[5] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362:1711 (1978), 425–461 | DOI | MR | Zbl

[6] Atiyah M. F., Ward R. S., “Instantons and algebraic geometry”, Comm. Math. Phys., 55:2 (1977), 117–124 | DOI | MR | Zbl

[7] Belavin A. A., Polyakov A. M., Schwartz A. S., Tyupkin Yu. S., “Pseudo-particle solutions of the Yang-Mills equations”, Phys. Lett. B, 59 (1975), 85–87 | DOI | MR

[8] Bogomolnyi E. B., “Ustoichivost klassicheskikh reshenii”, Yad. Fiz., 24 (1976), 861–870

[9] Donaldson S. K., “A new proof of a theorem of Narasimhan and Seshadri”, J. Differential Geom., 18:2 (1983), 269–277 | DOI | MR | Zbl

[10] Donaldson S. K., “Instantony i geometricheskaya teoriya invariantov”, Monopoli. Topologicheskie i variatsionnye metody, Mir, M., 1989, 255–267

[11] Eells J., Salamon S., “Twistorial constructions of harmonic maps of surfaces into four-manifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12:4 (1985), 589–640 | MR | Zbl

[12] Hitchin N. J., “Monopoles and geodesics”, Comm. Math. Phys., 83:4 (1982), 579–602 | DOI | MR | Zbl

[13] Hitchin N. J., “On the construction of monopoles”, Comm. Math. Phys., 89:2 (1983), 145–190 | DOI | MR | Zbl

[14] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc. (3), 55:1 (1987), 59–126 | DOI | MR | Zbl

[15] Jaffe A., Taubes C. H., Vortices and monopoles. Structure of static gauge theories, Progress in Physics, 80, Birkhauser, Boston, 1980 | MR

[16] Nahm W., All self-dual multimonolopes for arbitrary gauge groups, CERN preprint TH.3172, 1981 | MR

[17] Narasimhan M. S., Seshadri C. S., “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82 (1965), 540–567 | DOI | MR | Zbl

[18] Penrose R., “The twistor programme”, Rep. Mathematical Phys., 12:1 (1977), 65–76 | DOI | MR

[19] Prasad M. K., Sommerfield C. M., “Exact classical solutions for the t'Hooft monopole and the Julia-Zee dyon”, Phys. Rev. Letters, 35:12 (1975), 760–762 | DOI

[20] Rawnsley J. H., “F-structures, F-twistor spaces and harmonic maps”, Lecture Notes in Math., 1164, Springer, Berlin, 1985, 85–159 | DOI | MR

[21] Sergeev A. G., “Gipoteza o garmonicheskikh sferakh”, TMF, 164:3 (2010), 368–379 | DOI | Zbl

[22] Taubes C. H., “Stability in Yang-Mills theories”, Comm. Math. Phys., 91:2 (1983), 235–263 | DOI | MR | Zbl

[23] Taubs K. G., “Teoriya minimaksa dlya uravnenii Yanga–Millsa–Khiggsa”, Monopoli. Topologicheskie i variatsionnye metody, Mir, M., 1989, 379–491 | Zbl

[24] Uhlenbeck K. K., “Removable singularities in Yang-Mills fields”, Comm. Math. Phys., 83:1 (1982), 11–29 | DOI | MR | Zbl

[25] Uhlenbeck K., “Connections with $L^p$ bounds on curvature”, Comm. Math. Phys., 83:1 (1982), 31–42 | DOI | MR | Zbl

[26] Vladimirov V. S., Sergeev A. G., “O kompaktifikatsii prostranstva Minkovskogo i kompleksnom analize v trube buduschego”, Ann. Polon. Math., 46 (1985), 439–454 | DOI | MR | Zbl

[27] Ward R. S., “On self-dual gauge fields”, Phys. Lett. A, 61:2 (1977), 81–82 | DOI | MR | Zbl

[28] Wenthworth R. A., Higgs bundles and local systems on Riemann surfaces, Preprint, 2015 | MR

[29] Wilkin G., “Morse theory for the space of Higgs bundles”, Comm. Anal. Geom., 16:2 (2008), 283–332 | DOI | MR | Zbl