On the solvability of a boundary value problem in $ p$-adic string theory
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 117-132
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the study and solution of a boundary value problem for a convolution-type integral equation with cubic nonlinearity. The above problem has a direct application to the $ p$-adic theory of open-closed strings for the scalar tachyon field. It is shown that a one-parameter family of monotone continuous bounded solutions exists. Under additional conditions on the kernel of the equation, an asymptotic formula for the solutions thus constructed is established. Using these results, as particular cases we obtain Zhukovskaya's theorem on rolling solutions of the nonlinear equation in the $ p$-adic theory of open-closed strings and the Vladimirov–Volovich theorem on the existence of a nontrivial solution between certain vacua.
The results are extended to the case of a more general nonlinear boundary value problem.
@article{MMO_2018_79_1_a2,
author = {Kh. A. Khachatryan},
title = {On the solvability of a boundary value problem in $ p$-adic string theory},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {117--132},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a2/}
}
TY - JOUR AU - Kh. A. Khachatryan TI - On the solvability of a boundary value problem in $ p$-adic string theory JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2018 SP - 117 EP - 132 VL - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a2/ LA - ru ID - MMO_2018_79_1_a2 ER -
Kh. A. Khachatryan. On the solvability of a boundary value problem in $ p$-adic string theory. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 117-132. http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a2/