Orbit duality in ind-varieties of maximal generalized flags
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 155-194
Voir la notice de l'article provenant de la source Math-Net.Ru
We extend Matsuki duality to arbitrary ind-varieties of maximal generalized flags, in other words, to any homogeneous ind-variety $ \mathbf {G}/\mathbf {B}$ for a classical ind-group $ \mathbf {G}$ and a splitting Borel ind-subgroup $ \mathbf {B}\subset \mathbf {G}$. As a first step, we present an explicit combinatorial version of Matsuki duality in the finite-dimensional case, involving an explicit parametrization of $ K$- and $ G^0$-orbits on $ G/B$. After proving Matsuki duality in the infinite-dimensional case, we give necessary and sufficient conditions on a Borel ind-subgroup $ \mathbf {B}\subset \mathbf {G}$ for the existence of open and closed $ \mathbf {K}$- and $ \mathbf {G}^0$-orbits on $ \mathbf {G}/\mathbf {B}$, where $ \left (\mathbf {K},\mathbf {G}^0\right )$ is an aligned pair of a symmetric ind-subgroup $ \mathbf {K}$ and a real form $ \mathbf {G}^0$ of $ \mathbf {G}$.
@article{MMO_2017_78_1_a7,
author = {Ivan Penkov and Lucas Fresse},
title = {Orbit duality in ind-varieties of maximal generalized flags},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {155--194},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a7/}
}
TY - JOUR AU - Ivan Penkov AU - Lucas Fresse TI - Orbit duality in ind-varieties of maximal generalized flags JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2017 SP - 155 EP - 194 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a7/ LA - ru ID - MMO_2017_78_1_a7 ER -
Ivan Penkov; Lucas Fresse. Orbit duality in ind-varieties of maximal generalized flags. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 155-194. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a7/