On Salikhov's integral
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 131-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We state a new interpolation problem, which we solve using Salikhov's integral. This was previously used in the theory of Diophantine approximations. We study the asymptotic behaviour of orthogonal polynomials related to this problem.
@article{MMO_2016_77_1_a4,
     author = {V. N. Sorokin},
     title = {On {Salikhov's} integral},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {131--154},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a4/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - On Salikhov's integral
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2016
SP  - 131
EP  - 154
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a4/
LA  - ru
ID  - MMO_2016_77_1_a4
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T On Salikhov's integral
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2016
%P 131-154
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a4/
%G ru
%F MMO_2016_77_1_a4
V. N. Sorokin. On Salikhov's integral. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 131-154. http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a4/