Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2015_76_2_a3, author = {R. Roussarie and C. Rousseau}, title = {Finite cyclicity of some center graphics through a nilpotent point inside quadratic systems}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {205--248}, publisher = {mathdoc}, volume = {76}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a3/} }
TY - JOUR AU - R. Roussarie AU - C. Rousseau TI - Finite cyclicity of some center graphics through a nilpotent point inside quadratic systems JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2015 SP - 205 EP - 248 VL - 76 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a3/ LA - en ID - MMO_2015_76_2_a3 ER -
%0 Journal Article %A R. Roussarie %A C. Rousseau %T Finite cyclicity of some center graphics through a nilpotent point inside quadratic systems %J Trudy Moskovskogo matematičeskogo obŝestva %D 2015 %P 205-248 %V 76 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a3/ %G en %F MMO_2015_76_2_a3
R. Roussarie; C. Rousseau. Finite cyclicity of some center graphics through a nilpotent point inside quadratic systems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 2, pp. 205-248. http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a3/
[1] Dumortier F., Roussarie R., “Canard cycles and centre manifolds”, Memoirs of AMS, 121, no. 577, 1996, 1–100 | DOI | MR
[2] Dumortier F., Roussarie R., Rousseau C., “Hilbert's 16th problem for quadratic vector fields”, J. Diff. Equat., 110:1 (1994), 86–133 | DOI | MR | Zbl
[3] Dumortier F., El Morsalani M., Rousseau C., “Hilbert's 16th problem for quadratic systems and cyclicity of elementary graphics”, Nonlinearity, 9:5 (1996), 1209–1261 | DOI | MR | Zbl
[4] Dumortier F., Roussarie R., Sotomayor S., “Generic 3-parameter families of planar vector fields, unfolding of saddle, focus and elliptic singularities with nilpotent linear parts”, Bifurcations of planar vector fields, Lecture Notes in Math., 1480, Springer-Verlag, Berlin, 1991 | MR | Zbl
[5] Ilyashenko Y., Yakovenko S., “Finitely-smooth normal forms of local families of diffeomorphisms and vector fields”, Russian Math. Surv., 46 (1991), 1–43 | DOI | MR | Zbl
[6] Malgrange B., Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Math., 3, Oxford University Press, London, 1967 | MR
[7] Roussarie R., “Desingularization of unfoldings of cuspidal loops”, Geometry and analysis in nonlinear dynamics, Pitman Res. Notes Math. Series, 222, Longman Sci. and Tech., Harlow, 1992, 41–55 | MR
[8] Roussarie R., Rousseau C., “Finite cyclicity of nilpotent graphics of pp-type surrounding a center”, Bull. Belg. Math. Soc. Simon Stevin, 15:5 (2008), 889–920 | MR | Zbl
[9] Zhu H., Rousseau C., “Finite cyclicity of graphics with a nilpotent singularity of saddle or elliptic type”, J. Diff. Equat., 178 (2002), 325–436 | DOI | MR | Zbl