Almost complex structures on universal coverings of foliations
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 2, pp. 153-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider foliations of compact complex manifolds by analytic curves. It is well known that if the line bundle tangent to the foliation is negative, then, in general position, all leaves are hyperbolic. The manifold of universal coverings over the leaves passing through some transversal has a natural complex structure. We show that in a typical case this structure can be defined as a smooth almost complex structure on the product of the base by the unit disk. We prove that this structure is quasiconformal on the leaves and that the corresponding $ (1,0)$-forms and their derivatives with respect to the coordinates on the base and in the leaves admit uniform estimates. The derivatives grow no faster than some negative power of the distance to the boundary of the disk.
@article{MMO_2015_76_2_a2,
     author = {A. A. Shcherbakov},
     title = {Almost complex structures on universal coverings of foliations},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {153--204},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a2/}
}
TY  - JOUR
AU  - A. A. Shcherbakov
TI  - Almost complex structures on universal coverings of foliations
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2015
SP  - 153
EP  - 204
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a2/
LA  - ru
ID  - MMO_2015_76_2_a2
ER  - 
%0 Journal Article
%A A. A. Shcherbakov
%T Almost complex structures on universal coverings of foliations
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2015
%P 153-204
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a2/
%G ru
%F MMO_2015_76_2_a2
A. A. Shcherbakov. Almost complex structures on universal coverings of foliations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 2, pp. 153-204. http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a2/

[1] Alfors L., Lektsii o kvazikonformnykh otobrazheniyakh, Mir, M., 1969 | MR

[2] Ahlfors L., Bers L., “Riemann's mapping theorem for variable metrics”, Ann. Math., 72:2 (1960), 385–404 | DOI | MR | Zbl

[3] Brunella M., “Feuilletages holomorphes sur les surfaces complexes compactes”, Ann. Sci. École Norm. Sup., 30:5 (1997), 569–594 | MR | Zbl

[4] Brunella M., “Plurisubharmonic variation of the leafwise Poincaré metric”, Internat. J. Math., 14:2 (2003), 139–151 | DOI | MR | Zbl

[5] Brunella M., “On the plurisubharmonicity of the leafwise Poincaré metric on projective manifolds”, J. Math. Kyoto Univ., 45 (2005), 381–390 | MR | Zbl

[6] Brunella M., “Uniformisation of foliations by curves”, Holomorphic dynamical systems, Lecture Notes in Math., 1998, Springer, Berlin, 2010, 105–163 | DOI | MR | Zbl

[7] Glutsyuk A. A., “Giperbolichnost listov obschego odnomernogo golomorfnogo sloeniya na neosobom proektivnom algebraicheskom mnogoobrazii”, Tr. MIAN, 213, 1997, 90–111

[8] Glutsyuk A. A., “On simultaneous uniformization and local nonuniformizability”, C.R. Math. Acad. Sci. Paris, 334:6 (2002), 489–494 | DOI | MR | Zbl

[9] Ilyashenko Yu. S., “Sloeniya na analiticheskie krivye”, Matem. sb., 88 (1972), 558–577 | MR | Zbl

[10] Ilyashenko Yu. S., “Covering manifolds for analytic families of leaves of foliations by analytic curves”, Topol. Meth. Nonlinear Anal., 11 (1998), 361–373 | MR | Zbl

[11] Ilyashenko Yu. S., Shcherbakov A. A., “Remarks on the paper: Coverings manifolds for analytic families of leaves of foliations by analytic curves”, Topol. Meth. Nonlinear Anal., 23 (2004), 377–381 | MR

[12] Lins-Neto A., “Uniformization and the Poincaré metric on the leaves of a foliation by curves”, Bol. Soc. Bras. Mat., N.S., 31:3 (2000), 351–366 | DOI | MR | Zbl

[13] Shcherbakov A. A., “Metrics and smooth uniformisation of leaves of holomorphic foliations”, Mosc. Math. J., 11:1 (2011), 157–178 | MR | Zbl