Noncommutative geometry and the tomography of manifolds
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 159-180
Voir la notice de l'article provenant de la source Math-Net.Ru
The tomography of manifolds describes a range of inverse problems in which we seek to reconstruct a Riemannian manifold from its boundary data (the “Dirichlet–Neumann” mapping, the reaction operator, and others). Different types of data correspond to physically different situations: the manifold is probed by electric currents or by acoustic or electromagnetic waves. In our paper we suggest a unified approach to these problems, using the ideas of noncommutative geometry. Within the framework of this approach, the underlying manifold for the reconstruction is obtained as the spectrum of an adequate Banach algebra determined by the boundary data.
@article{MMO_2014_75_2_a4,
author = {M. I. Belishev and M. N. Demchenko and A. N. Popov},
title = {Noncommutative geometry and the tomography of manifolds},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {159--180},
publisher = {mathdoc},
volume = {75},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a4/}
}
TY - JOUR AU - M. I. Belishev AU - M. N. Demchenko AU - A. N. Popov TI - Noncommutative geometry and the tomography of manifolds JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2014 SP - 159 EP - 180 VL - 75 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a4/ LA - ru ID - MMO_2014_75_2_a4 ER -
M. I. Belishev; M. N. Demchenko; A. N. Popov. Noncommutative geometry and the tomography of manifolds. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 159-180. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a4/