Noncommutative geometry and the tomography of manifolds
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 159-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The tomography of manifolds describes a range of inverse problems in which we seek to reconstruct a Riemannian manifold from its boundary data (the “Dirichlet–Neumann” mapping, the reaction operator, and others). Different types of data correspond to physically different situations: the manifold is probed by electric currents or by acoustic or electromagnetic waves. In our paper we suggest a unified approach to these problems, using the ideas of noncommutative geometry. Within the framework of this approach, the underlying manifold for the reconstruction is obtained as the spectrum of an adequate Banach algebra determined by the boundary data.
@article{MMO_2014_75_2_a4,
     author = {M. I. Belishev and M. N. Demchenko and A. N. Popov},
     title = {Noncommutative geometry and the tomography of manifolds},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {159--180},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a4/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - M. N. Demchenko
AU  - A. N. Popov
TI  - Noncommutative geometry and the tomography of manifolds
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 159
EP  - 180
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a4/
LA  - ru
ID  - MMO_2014_75_2_a4
ER  - 
%0 Journal Article
%A M. I. Belishev
%A M. N. Demchenko
%A A. N. Popov
%T Noncommutative geometry and the tomography of manifolds
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 159-180
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a4/
%G ru
%F MMO_2014_75_2_a4
M. I. Belishev; M. N. Demchenko; A. N. Popov. Noncommutative geometry and the tomography of manifolds. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 159-180. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a4/

[1] Belishev M. I., “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[2] Belishev M. I., “The Calderon problem for two-dimensional manifolds by the BC-method”, SIAM J. Math. Anal., 35:1 (2003), 172–182 | DOI | MR | Zbl

[3] Belishev M. I., “Recent progress in the boundary control method”, Inverse problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[4] Belishev M. I., “Geometrization of rings as a method for solving inverse problems”, Sobolev spaces in Mathematics III, Int. Math Ser. (N.Y.), 10, Springer, New York, 2009, 5–24 | DOI | MR | Zbl

[5] Belishev M. I., Demchenko M. N., “Time-optimal reconstruction of Riemannian manifold via boundary electromagnetic measurements”, J. Inverse and Ill-Posed Probl., 19:2 (2011), 167–188 | DOI | MR | Zbl

[6] Belishev M. I., Demchenko M. N., “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geom. Phys., 78 (2014), 29–47 | DOI | MR | Zbl

[7] Belishev M. I., Sharafutdinov V. A., “Dirichlet to Neumann operator on differential forms”, Bull. Sci. Math., 132:2 (2008), 128–145 | DOI | MR | Zbl

[8] Belishev M. I., Wada N., A $C^*$-algebra associated with dynamics on a graph of strings, http://mathsoc.jp/publication/JMSJ/inpress.html

[9] Birman M. Sh., Solomjak M. Z., Spectral theory of selfadjoint operators in Hilbert space, D. Reidel Publishing Co., Dordrecht, 1987 | MR

[10] Forster O., Lectures on Riemann surfaces, Graduate Texts in Math., 81, Springer-Verlag, New York–Berlin, 1981 | DOI | MR | Zbl

[11] Kalman R. E., Falb P. L., Arbib M. A., Topics in mathematical system theory, McGraw-Hill, New York, 1969 | MR | Zbl

[12] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR

[13] Schwarz G., Hodge decomposition — a method for solving boundary value problems, Lecture notes in Math., 1607, Springer-Verlag, Berlin, 1995 | MR | Zbl