Distribution of the eigenvalues of singular differential operators in a space of vector-functions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 107-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

A significant part of B. M. Levitan's scientific activity dealt with questions on the distribution of the eigenvalues of differential operators [1]. To study the spectral density, he mainly used Carleman's method, which he perfected. As a rule, he considered scalar differential operators. The purpose of this paper is to study the spectral density of differential operators in a space of vector-functions. The paper consists of two sections. In the first we study the asymptotics of a fourth-order differential operator $$ y^{(4)}+Q(x)y=\lambda y, $$ both taking account of the rotational velocity of the eigenvectors of the matrix $ Q(x)$ and without taking the rotational velocity of these vectors into account. In Section 2 we study the asymptotics of the spectrum of a non-semi-bounded Sturm–Liouville operator in a space of vector-functions of any finite dimension.
@article{MMO_2014_75_2_a1,
     author = {N. F. Valeev and \`E. A. Nazirova and Ya. T. Sultanaev},
     title = {Distribution of the eigenvalues of singular differential operators in a space of vector-functions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {107--123},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a1/}
}
TY  - JOUR
AU  - N. F. Valeev
AU  - È. A. Nazirova
AU  - Ya. T. Sultanaev
TI  - Distribution of the eigenvalues of singular differential operators in a space of vector-functions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 107
EP  - 123
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a1/
LA  - ru
ID  - MMO_2014_75_2_a1
ER  - 
%0 Journal Article
%A N. F. Valeev
%A È. A. Nazirova
%A Ya. T. Sultanaev
%T Distribution of the eigenvalues of singular differential operators in a space of vector-functions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 107-123
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a1/
%G ru
%F MMO_2014_75_2_a1
N. F. Valeev; È. A. Nazirova; Ya. T. Sultanaev. Distribution of the eigenvalues of singular differential operators in a space of vector-functions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 107-123. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a1/

[1] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu (samosopryazhennye obyknovennye differentsialnye operatory), Nauka, M., 1970

[2] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[3] Kostyuchenko A. G., Levitan B. M., “Ob asimptoticheskom povedenii sobstvennykh znachenii operatornoi zadachi Shturma–Liuvillya”, Funkts. analiz i ego pril., 1:1 (1967), 86–96 | MR | Zbl

[4] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[5] Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR | Zbl

[6] Kostyuchenko A. G., Sargsyan I. S., Raspredelenie sobstvennykh znachenii (samosopryazhennye obyknovennye differentsialnye operatory), Nauka, M., 1979

[7] Sultanaev Ya. T., “Ob asimptotike spektra differentsialnogo operatora v prostranstve vektor-funktsii”, Diff. uravneniya, 10:9 (1974), 1673–1683 | MR | Zbl

[8] Ismagilov R. S., “Ob asimptotike spektra differentsialnogo operatora v prostranstve vektor-funktsii”, Matem. zametki, 9:6 (1971), 667–676 | Zbl

[9] Ismagilov R. S., Kostyuchenko A. G., “Ob asimptotike spektra nepoluogranichennogo vektornogo operatora Shturma–Liuvillya”, Funkts. analiz i ego pril., 42:2 (2008), 11–22 | DOI | MR

[10] Ismagilov R. S., Kostyuchenko A. G., “O spektre vektornogo operatora Shredingera”, Funkts. analiz i ego pril., 41:1 (2007), 39–51 | DOI | MR | Zbl