On positive solutions of one class of nonlinear integral equations of Hammerstein--Nemytski\u\i\ type on the whole axis
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 1-14

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to studying one class of nonlinear integral equations of Hammerstein–Nemytskiĭ type on the whole axis, which occurs in the theory of transfer in inhomogeneous medium. It is proved that these equations can be solved in various function spaces, and the asymptotic behaviour at infinity of the solutions that are constructed is studied.
@article{MMO_2014_75_1_a0,
     author = {Kh. A. Khachatryan},
     title = {On positive solutions of one class of nonlinear integral equations of {Hammerstein--Nemytski\u\i\} type on the whole axis},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a0/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
TI  - On positive solutions of one class of nonlinear integral equations of Hammerstein--Nemytski\u\i\ type on the whole axis
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 1
EP  - 14
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a0/
LA  - ru
ID  - MMO_2014_75_1_a0
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%T On positive solutions of one class of nonlinear integral equations of Hammerstein--Nemytski\u\i\ type on the whole axis
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 1-14
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a0/
%G ru
%F MMO_2014_75_1_a0
Kh. A. Khachatryan. On positive solutions of one class of nonlinear integral equations of Hammerstein--Nemytski\u\i\ type on the whole axis. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a0/