On positive solutions of one class of nonlinear integral equations of Hammerstein--Nemytski\u\i\ type on the whole axis
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to studying one class of nonlinear integral equations of Hammerstein–Nemytskiĭ type on the whole axis, which occurs in the theory of transfer in inhomogeneous medium. It is proved that these equations can be solved in various function spaces, and the asymptotic behaviour at infinity of the solutions that are constructed is studied.
@article{MMO_2014_75_1_a0,
     author = {Kh. A. Khachatryan},
     title = {On positive solutions of one class of nonlinear integral equations of {Hammerstein--Nemytski\u\i\} type on the whole axis},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a0/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
TI  - On positive solutions of one class of nonlinear integral equations of Hammerstein--Nemytski\u\i\ type on the whole axis
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 1
EP  - 14
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a0/
LA  - ru
ID  - MMO_2014_75_1_a0
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%T On positive solutions of one class of nonlinear integral equations of Hammerstein--Nemytski\u\i\ type on the whole axis
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 1-14
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a0/
%G ru
%F MMO_2014_75_1_a0
Kh. A. Khachatryan. On positive solutions of one class of nonlinear integral equations of Hammerstein--Nemytski\u\i\ type on the whole axis. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a0/

[1] Corduneanu C., Integral equations and Applications, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[2] Askhabov S. N., Mukhtarov Kh. Sh., “Ob odnom klasse nelineinykh integralnykh uravnenii tipa svertki”, Differentsialnye uravneniya, 23:3 (1987), 512–514 | MR | Zbl

[3] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Mikhlin S. G., Rakovschik L. S., Stetsenko V. Ya., Integralnye uravneniya, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1968

[4] Appell J., Zabrejko P. P., Nonlinear superposition operators, Cambridge Tracts in Mathematics, 95, 1990 | MR | Zbl

[5] Engibaryan N. B., “Ob odnoi zadache nelineinogo perenosa izlucheniya”, Astrofizika, 2:4 (1966), 31–36

[6] Sobolev V. V., Kurs teoreticheskoi astrofiziki, Nauka, M., 1985

[7] Sargan J. D., “The distribution of wealth”, Econometrica, 25:4 (1957), 568–590 | DOI | MR | Zbl

[8] Engibaryan N. B., Khachatryan A. Kh., “O tochnoi linearizatsii zadachi skolzheniya razrezhennogo gaza v modeli BGK”, TMF, 125:2 (2000), 339–342 | DOI | MR | Zbl

[9] Engibaryan N. B., Khachatryan A. Kh., “Voprosy nelineinoi teorii dinamiki razrezhennogo gaza”, Mat. modelirovanie, 16:1 (2004), 67–74 | MR | Zbl

[10] Khachatryan A. Kh., Khachatryan Kh. A., “Kachestvennye razlichiya reshenii dlya odnoi modeli uravneniya Boltsmana v lineinom i nelineinom sluchayakh”, TMF, 172:3 (2012), 497–504 | DOI | Zbl

[11] Yengibarian N. B., “Renewal equation on the whole line”, Stochastic Process. Appl., 85:2 (2000), 237–247 | DOI | MR | Zbl

[12] Sgibnev M. S., “O edinstvennosti resheniya sistemy integralnykh uravnenii tipa vosstanovleniya na pryamoi”, Sib. matem. zhurn., 51:1 (2010), 204–211 | MR | Zbl

[13] Crump K. S., “On systems of renewal equtions”, J. Math. Anal. Appl., 30 (1970), 425–434 | DOI | MR | Zbl

[14] Sgibnev M. S., “Sistemy integralnykh uravnenii tipa vosstanovleniya na pryamoi”, Differents. uravneniya, 40:1 (2004), 128–137 | MR | Zbl

[15] Engibaryan N. B., “Konservativnye sistemy integralnykh uravnenii svertki na polupryamoi i vsei pryamoi”, Matem. sb., 193:6 (2002), 61–82 | DOI | MR | Zbl

[16] Khachatryan A. Kh., Khachatryan Kh. A., “Hammerstein–Nemitskii type nonlinear integral equations on half line in space $L_1(0,+\infty)\cap L_\infty(0,+\infty)$”, Acta Universitatis Palack. Olomuc. Fac. Rer. Nat. Mathematica, 52:1 (2013), 89–100 | MR | Zbl

[17] Salhi N., Taoudi M. A., “Existence of integrable solutions of an integral equation of Hammerstein type on an unbounded interval”, Mediter. J. Mathematics, 9:4 (2012), 729–739 | DOI | MR | Zbl

[18] Arabadzhyan L. G., Khachatryan A. S., “Ob odnom klasse integralnykh uravnenii tipa svertki”, Matem. sb., 198:7 (2007), 45–62 | DOI | MR | Zbl

[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR