Discretization of Baker--Akhiezer modules and commuting difference operators in several discrete variables
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 317-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of discrete Baker–Akhiezer (DBA) modules, which are modules over the ring of difference operators, as a discretization of Baker–Akhiezer modules, which are modules over the ring of differential operators. We use it to construct commuting difference operators with matrix coefficients in several discrete variables.
@article{MMO_2013_74_2_a6,
     author = {A. E. Mironov and A. Nakayashiki},
     title = {Discretization of {Baker--Akhiezer} modules and commuting difference operators in several discrete variables},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {317--338},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a6/}
}
TY  - JOUR
AU  - A. E. Mironov
AU  - A. Nakayashiki
TI  - Discretization of Baker--Akhiezer modules and commuting difference operators in several discrete variables
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 317
EP  - 338
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a6/
LA  - ru
ID  - MMO_2013_74_2_a6
ER  - 
%0 Journal Article
%A A. E. Mironov
%A A. Nakayashiki
%T Discretization of Baker--Akhiezer modules and commuting difference operators in several discrete variables
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 317-338
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a6/
%G ru
%F MMO_2013_74_2_a6
A. E. Mironov; A. Nakayashiki. Discretization of Baker--Akhiezer modules and commuting difference operators in several discrete variables. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 317-338. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a6/

[1] Krichever I. M., Novikov S. P., “Dvumerizovannaya tsepochka Tody, kommutiruyuschie raznostnye operatory i golomorfnye rassloeniya”, UMN, 58:3 (2003), 51–88 | DOI | MR | Zbl

[2] Krichever I. M., “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, UMN, 33:4 (1978), 215–216

[3] Mumford D., “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de Vries equation and related non-linear equations”, Proc. Int. Symp. on Alg. Geom. (Kyoto Univ., Kyoto, 1977), Kinokuniya, Tokyo, 1978, 115–153 | MR

[4] Mironov A. E., “Diskretnye analogi operatorov Diksme”, Matem. sb., 198:10 (2007), 57–66 | DOI | MR | Zbl

[5] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[6] Zheglov A. B., On rings of commuting partial differential operators, arXiv: 1106.0765

[7] Kurke H., Osipov D., Zheglov A., Commuting differential operators and higher-dimensional algebraic varieties, arXiv: 1211.0976

[8] Nakayashiki A., “Structure of Baker–Akhiezer modules of principally polarized Abelian varieties, commuting partial differential operators and associated integrable systems”, Duke Math. J., 62:2 (1991), 315–358 | DOI | MR | Zbl

[9] Nakayashiki A., “Commuting partial differential operators and vector bundles over Abelian varieties”, Amer. J. Math., 116:1 (1994), 65–100 | DOI | MR | Zbl

[10] Miwa T., “On Hirota's difference equations”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR | Zbl

[11] Date E., Jimbo M., Miwa T., “Method for generating discrete soliton equations, I”, J. Phys. Soc. Japan, 51:12 (1982), 4116–4124 ; “Method for generating discrete soliton equations, II”, J. Phys. Soc. Japan, 51:12 (1982), 4125–4131 ; “Method for generating discrete soliton equations, III”, J. Phys. Soc. Japan, 52:2 (1983), 388–393 ; “Method for generating discrete soliton equations, IV”, J. Phys. Soc. Japan, 52:3 (1983), 761–765 ; “Method for generating discrete soliton equations, V”, J. Phys. Soc. Japan, 52:3 (1983), 766–771 | DOI | MR | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI

[12] Melnik I. A., Mironov A. E., “Baker–Akhiezer Modules on Rational Varieties”, SIGMA, 6 (2010), 030, 15 pp. | MR | Zbl

[13] Nakayashiki A., “On hyperelliptic Abelian function of genus 3”, J. Geom. Phys., 61:6 (2011), 961–985 | DOI | MR | Zbl

[14] Klein F., “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 27 (1886), 341–464 | MR

[15] Klein F., “Ueber hyperelliptische Sigmafunctionen (Zweiter Aufsatz)”, Math. Ann., 32 (1888), 351–380 | DOI | MR

[16] Bukhshtaber V. M., Enolskii V. Z., Leikin D. V., “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR

[17] Nakayashiki A., “Algebraic expressions of sigma functions of $(n, s)$ curves”, Asian J. Math., 14:2 (2010), 175–212 | DOI | MR | Zbl