Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2013_74_2_a6, author = {A. E. Mironov and A. Nakayashiki}, title = {Discretization of {Baker--Akhiezer} modules and commuting difference operators in several discrete variables}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {317--338}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a6/} }
TY - JOUR AU - A. E. Mironov AU - A. Nakayashiki TI - Discretization of Baker--Akhiezer modules and commuting difference operators in several discrete variables JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2013 SP - 317 EP - 338 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a6/ LA - ru ID - MMO_2013_74_2_a6 ER -
%0 Journal Article %A A. E. Mironov %A A. Nakayashiki %T Discretization of Baker--Akhiezer modules and commuting difference operators in several discrete variables %J Trudy Moskovskogo matematičeskogo obŝestva %D 2013 %P 317-338 %V 74 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a6/ %G ru %F MMO_2013_74_2_a6
A. E. Mironov; A. Nakayashiki. Discretization of Baker--Akhiezer modules and commuting difference operators in several discrete variables. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 317-338. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a6/
[1] Krichever I. M., Novikov S. P., “Dvumerizovannaya tsepochka Tody, kommutiruyuschie raznostnye operatory i golomorfnye rassloeniya”, UMN, 58:3 (2003), 51–88 | DOI | MR | Zbl
[2] Krichever I. M., “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, UMN, 33:4 (1978), 215–216
[3] Mumford D., “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de Vries equation and related non-linear equations”, Proc. Int. Symp. on Alg. Geom. (Kyoto Univ., Kyoto, 1977), Kinokuniya, Tokyo, 1978, 115–153 | MR
[4] Mironov A. E., “Diskretnye analogi operatorov Diksme”, Matem. sb., 198:10 (2007), 57–66 | DOI | MR | Zbl
[5] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl
[6] Zheglov A. B., On rings of commuting partial differential operators, arXiv: 1106.0765
[7] Kurke H., Osipov D., Zheglov A., Commuting differential operators and higher-dimensional algebraic varieties, arXiv: 1211.0976
[8] Nakayashiki A., “Structure of Baker–Akhiezer modules of principally polarized Abelian varieties, commuting partial differential operators and associated integrable systems”, Duke Math. J., 62:2 (1991), 315–358 | DOI | MR | Zbl
[9] Nakayashiki A., “Commuting partial differential operators and vector bundles over Abelian varieties”, Amer. J. Math., 116:1 (1994), 65–100 | DOI | MR | Zbl
[10] Miwa T., “On Hirota's difference equations”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR | Zbl
[11] Date E., Jimbo M., Miwa T., “Method for generating discrete soliton equations, I”, J. Phys. Soc. Japan, 51:12 (1982), 4116–4124 ; “Method for generating discrete soliton equations, II”, J. Phys. Soc. Japan, 51:12 (1982), 4125–4131 ; “Method for generating discrete soliton equations, III”, J. Phys. Soc. Japan, 52:2 (1983), 388–393 ; “Method for generating discrete soliton equations, IV”, J. Phys. Soc. Japan, 52:3 (1983), 761–765 ; “Method for generating discrete soliton equations, V”, J. Phys. Soc. Japan, 52:3 (1983), 766–771 | DOI | MR | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI
[12] Melnik I. A., Mironov A. E., “Baker–Akhiezer Modules on Rational Varieties”, SIGMA, 6 (2010), 030, 15 pp. | MR | Zbl
[13] Nakayashiki A., “On hyperelliptic Abelian function of genus 3”, J. Geom. Phys., 61:6 (2011), 961–985 | DOI | MR | Zbl
[14] Klein F., “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 27 (1886), 341–464 | MR
[15] Klein F., “Ueber hyperelliptische Sigmafunctionen (Zweiter Aufsatz)”, Math. Ann., 32 (1888), 351–380 | DOI | MR
[16] Bukhshtaber V. M., Enolskii V. Z., Leikin D. V., “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR
[17] Nakayashiki A., “Algebraic expressions of sigma functions of $(n, s)$ curves”, Asian J. Math., 14:2 (2010), 175–212 | DOI | MR | Zbl