On problems concerning moment-angle complexes, and polyhedral products
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 247-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of this paper is to give a list of problems closely connected to moment-angle complexes, polyhedral products, and toric varieties. Another purpose is to exhibit the ubiquity and utility of these spaces which have been the subject of seminal work of Buchstaber–Panov [15], [16] as well as many others. References: 77 entries.
@article{MMO_2013_74_2_a2,
     author = {A. Bahri and M. Bendersky and F. R. Cohen and S. Gitler},
     title = {On problems concerning moment-angle complexes, and polyhedral products},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {247--264},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a2/}
}
TY  - JOUR
AU  - A. Bahri
AU  - M. Bendersky
AU  - F. R. Cohen
AU  - S. Gitler
TI  - On problems concerning moment-angle complexes, and polyhedral products
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 247
EP  - 264
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a2/
LA  - en
ID  - MMO_2013_74_2_a2
ER  - 
%0 Journal Article
%A A. Bahri
%A M. Bendersky
%A F. R. Cohen
%A S. Gitler
%T On problems concerning moment-angle complexes, and polyhedral products
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 247-264
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a2/
%G en
%F MMO_2013_74_2_a2
A. Bahri; M. Bendersky; F. R. Cohen; S. Gitler. On problems concerning moment-angle complexes, and polyhedral products. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 247-264. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a2/

[1] Adem A., Cohen F. R., Torres E., “Commuting elements, simplicial spaces, and filtrations of classifying spaces”, Math. Proc. of the Camb. Phil. Soc., 152 (2011), 91–114 | DOI | MR

[2] Al-Raisi A., Thesis. In preparation

[3] Anick D., Differential Algebras in Topology, A. K. Peters/CRC Press, February 28, 1993 | MR | Zbl

[4] Astey L., Bahri A., Bendersky M., Cohen F. R., Davis D. M., Gitler S., Mahowald M., Ray N., Wood R., “The $KO^*$-rings of $BT^m$, the Davis–Januszkiewicz spaces and certain toric manifolds”, JPAA (to appear)

[5] Bahri A., Bendersky M., Cohen F. R., Gitler S., “The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces”, Advances in Math., 225 (2010), 1634–1668, arXiv: 0711.4689 | DOI | MR | Zbl

[6] Bahri A., Bendersky M., Cohen F. R., Gitler S., “Decompositions of the polyhedral product functor with applications to moment-angle complexes and related spaces”, PNAS, 106:30 (2009), 12241–12244 | DOI | MR | Zbl

[7] Bahri A., Bendersky M., Cohen F. R., Gitler S., “Cup-products in generalized moment-angle complexes”, Math. Proc. Camb. Phil. Soc., 2012 | MR

[8] Bahri A., Bendersky M., Cohen F. R., Gitler S., Operations on polyhedral products and a new topological construction of infinite families of toric manifolds, arXiv: 1011.0094

[9] Bahri A., Bendersky M., Cohen F. R., Gitler S., A spectral sequence and Cartan formula for polyhedral products, In preparation

[10] Baskakov I., “Cohomology of K-powers of spaces and the combinatorics of simplicial divisions”, Russian Math. Surveys, 57:5 (2002), 989–990 | DOI | MR | Zbl

[11] Baskakov I., “Triple Massey products in the cohomology of moment-angle complexes”, Russian Math. Surveys, 58:5 (2003), 1039–1041 | DOI | MR | Zbl

[12] Baskakov I., Buchstaber V., Panov T., “Algebras of cellular cochains, and torus actions”, Russian Math. Surveys, 59:3 (2004), 562–563 | DOI | MR | Zbl

[13] Björner A., Sarkaria K. S., “The zeta function of a simplicial complex”, Israel Journal of Math., 103 (1998), 29–40 | DOI | MR | Zbl

[14] Bott R., Samelson H., “On the Pontryagin product in spaces of paths”, Comment. Math. Helv., 27 (1953), 320–337 | DOI | MR | Zbl

[15] Buchstaber V., Panov T., “Actions of tori, combinatorial topology and homological algebra”, Russian Math. Surveys, 55:5 (2000), 825–921 | DOI | MR | Zbl

[16] Buchstaber V., Panov T., Torus actions and their applications in topology and combinatorics, AMS University Lecture Series, 24, 2002 | MR | Zbl

[17] Buchstaber V., Panov T., Ray N., “Spaces of polytopes and cobordism of quasitoric manifolds”, Moscow Math. J., 7:2 (2007), 219–242 | MR | Zbl

[18] Callegaro F., Cohen F. R., Salvetti S., The cohomology of the braid group $B_3$ and of $SL_2(\mathbb{Z})$ with coefficients in a geometric representation, arXiv: 1204.5390

[19] Camacho C., Kuiper N., Palis J., “The topology of holomorphic flows with singularity”, Pub. IHES, 48 (1978), 5–38 | DOI | MR | Zbl

[20] Chari C., Pressley A., A Guide to Quantum Groups, Cambridge University Press, Jul, 1995, 651 pp. | Zbl

[21] Choi S., Park H., Wedge operations and torus symmetries, arXiv: 1305.0136

[22] Cohen F. R., Wu J., “Artin's braid groups, free groups, and the loop space of the 2-sphere”, Quarterly Math. J., 62:4 (2011), 891 | DOI | MR | Zbl

[23] Coxeter H. S. M., “Regular Skew Polyhedra in Three and Four Dimension, and their Topological Analogues”, Proc. London Math. Soc., 42–43:1 (1938), 33–62 | DOI | MR

[24] Russian Math. Surveys, 33 (1978), 97–154 | DOI | MR | Zbl

[25] Davis M., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[26] Davis M., Okun B., Cohomology computations for Artin groups, Bestvina–Brady groups, and graph products, arXiv: 1002.2564v1 | MR

[27] De Concini C., Procesi C., “Wonderful models of subspace arrangements”, Selecta Math. (N.S.), 1:3 (1995), 459–494 | DOI | MR | Zbl

[28] Deligne P., Goresky M., MacPherson R., “L'algèbre de cohomologie du complément, dans un espace affine, d'une famille finie de sous-espaces affines”, Michigan Math. J., 48 (2000), 121–136 | DOI | MR | Zbl

[29] Denham G., Suciu A., “Moment-angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | DOI | MR | Zbl

[30] Dobrinskaya N., Loops on polyhedral products and diagonal arrangements, arXiv: 0901.2871

[31] Dobrinskaya N., “Higher commutators in the loop space homology of $K$-products”, Proc. Steklov Inst. Math., 266, 2009, 91–104 | DOI | MR | Zbl

[32] Drinfel'd V. G., “On the structure of quasi-triangular quasi-Hopf algebras”, Funct. Anal. Appl., 26 (1992), 63–65 | DOI | MR

[33] Ewald G., “Spherical complexes and nonprojective toric varieties”, Discrete and Computational Geometry, 1 (1986), 115–122 | DOI | MR | Zbl

[34] Erokhovets N. Yu., “Buchstaber invariant of simple polytopes”, Uspekhi Mat. Nauk, 63:5(383) (2008), 187–188 | DOI | MR | Zbl

[35] Félix Y., Tanré D., “Rational homotopy of the polyhedral product functor”, Proc. AMS, 137 (2009), 891–898 | DOI | MR | Zbl

[36] Franz M., The integral cohomology of smooth toric varieties, arXiv: math/0308253v1

[37] Franz M., “The integral cohomology of toric manifolds”, Proceedings of the Keldysh Conference (Moscow, 2004), Proc. Steklov Inst. Math., 252, 2006, 53–62 | DOI | MR

[38] Franz M., Koszul Duality for Tori, Thesis, Universität Konstanz, 2001

[39] Ganea T., “A generalization of the homology and homotopy suspension”, Comment. Math. Helv., 39 (1965), 295–322 | DOI | MR | Zbl

[40] Gitler S., López de Medrano S., “Moment-angle manifolds and intersections of quadrics”, Geom. Topol., 17 (2013), 1497–1534 | DOI | MR | Zbl

[41] Goresky M., MacPherson R., Stratified Morse Theory, Ergebnisse Der Mathematik Und Ihrer Grenzgebiete, 3$^\mathrm{rd}$ series, Springer-Verlag, Berlin, 1988, 14 pp. | MR | Zbl

[42] Grbić J., Theriault S., “Homotopy type of the complement of a coordinate subspace arrangement of codimension two”, Russian Math. Surveys, 59:3 (2004), 1207–1209 | DOI | MR | Zbl

[43] Grbić J., Panov T., Theriault S., Wu J., Homotopy types of moment-angle complexes for flag complexes, arXiv: 1211.0873v3

[44] Haynes G. C., Cohen F. R., Koditschek D., “Gait Transitions for Quasi-Static Hexapedal Locomotion on Level Ground”, The 14-th International Symposium on Robotics Research (ISRR 2009), 105–121 | Zbl

[45] Hochster M., “Cohen–Macaulay rings, combinatorics, and simplicial complexes”, Ring theory, Proc. Second Conf. (Univ. Oklahoma, Norman, Okla., 1975), v. II, Lecture Notes in Pure and Appl. Math., 26, Dekker, New York, 1977, 171–223 | MR

[46] Hu Y., “On the homology of complements of arrangements of sub-spaces and spheres”, P.A.M.S., 122 (1994), 285–290 | DOI | MR | Zbl

[47] James I., “Reduced product spaces”, Ann. of Math., 62 (1955), 170–197 | DOI | MR | Zbl

[48] Jewell K., “Complements of sphere and sub-space arrangements”, Topology Appl., 56:3 (1994), 199–214 | DOI | MR | Zbl

[49] Jewell K., Orlik P., Shapiro B. Z., “On the complements of affine sub-space arrangements”, Topology Appl., 56 (1994), 215–233 | DOI | MR | Zbl

[50] Kamiyama Y., Tsukuda S., “The configuration space of the $n$-arms machine in the Euclidean space”, Topology Appl., 154 (2007), 1447–1464 | DOI | MR | Zbl

[51] Kohno T., “Linear representations of braid groups and classical Yang–Baxter equations”, Cont. Math., 78 (1988), 339–363 | DOI | MR | Zbl

[52] Kohno T., “Vassiliev invariants and de Rham complex on the space of knots”, Symplectic Geometry and Quantization, Contemp. Math., 179, AMS, Providence, RI, 1994, 123–138 | DOI | MR

[53] Kohno T., “Elliptic $KZ$ system, braid groups of the torus and Vassiliev invariants”, Topology Appl., 78 (1997), 79–94 | DOI | MR | Zbl

[54] Longueville M. de, Schultz C., “The cohomology rings of complements of subspace arrangements”, Math. Ann., 319:4 (2001), 625–646 | DOI | MR | Zbl

[55] López de Medrano S., “Topology of the Intersection of Quadrics in $\mathbb{R}^n$”, Algebraic Topology (Arcata, Ca), LNM, 1370, Springer-Verlag, 1989, 280–292 | MR

[56] Luo S., Matsumura T., Moore F., Moment-Angle Complexes and the Big Cohen–Macaulayness, arXiv: 1205.1566

[57] Notbohm D., Ray N., “On Davis–Januszkiewicz homotopy types. Formality I and rationalization”, AGT, 5 (2005), 31–51 | DOI | MR | Zbl

[58] Panov T., “Cohomology of face rings, and torus actions”, Surveys in Contemporary Mathematics, London Math. Soc. Lecture Notes, 347, Cambridge, 2008, 165–201, arXiv: math/0506526 | MR | Zbl

[59] Panov T., Ray N., Vogt R., “Colimits, Stanley–Reisner algebras, and loop spaces”, Categorical decomposition techniques in algebraic topology, Progress in Mathematics, 215, Birkhäuser, Basel, 2004, 261–291 | MR | Zbl

[60] Poincaré H., Sur les properieties des fonctions definies par les equations aux differences partiells, Thése, Paris, 1879

[61] Porter G., “The homotopy groups of wedges of suspensions”, Amer. Math. J., 88 (1966), 655–663 | DOI | MR | Zbl

[62] Putman A., Private communication

[63] Qiang S., Thesis, Univ. of Rochester, 2011

[64] Seeliger N., On the cohomology of the free loop space of a complex projective space, arXiv: 1110.6608 | MR

[65] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan, 11, 1994 | MR | Zbl

[66] Siegel C. L., “Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewischtslösung”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 1952, 21–30 | MR | Zbl

[67] Stafa M., Thesis, in preparation, Univ of Rochester, 2013

[68] Stanley R. P., Combinatorics and Commutative Algebra, Progress in Mathematics, 41, 2$^{\mathrm{nd}}$, Birkhäuser, Boston, MA, 1996 | MR | Zbl

[69] Suciu A., The rational homology of real toric manifolds, arXiv: 1302.2342

[70] Suciu A., Private communication

[71] Ustinovsky Y., Doubling operation for polytopes and torus actions, arXiv: 0909.1050

[72] Ustinovsky Y., Toral rank conjecture for moment-angle complexes, arXiv: 0909.1053

[73] Math. USSR Izvestija, 5 (1971), 1083–1119 | DOI | MR | Zbl

[74] Wang X., Zheng Q., The homology of simplicial complement and the cohomology of the moment-angle-complexes, arXiv: 1006.3904

[75] Welker V., Ziegler G., Živaljević R., “Homotopy colimits-comparison lemmas for combinatorial applications”, Reine J. Angew. Math., 509 (1999), 117–149 | DOI | MR | Zbl

[76] Zheng Q., The cohomology algebra of polyhedral products, arXiv: 1206.6629

[77] Ziegler G., Živaljević R., “Homotopy types of sub-space arrangements via diagrams of spaces”, Math. Ann., 295 (1993), 527–548 | DOI | MR | Zbl