On the orbit space of an irreducible representation of the special unitary group
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 175-199
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $V$ be a real vector space and $G\subset\mathrm{GL}(V)$ a compact linear Lie group. The author considers the question whether the orbit space (topological quotient) $V/G$ is a smooth manifold. The case in which $G$ is either abelian or locally isomorphic to $SU_2$ has been studied in a previous work of the author. In this article, $G$ is a compact group locally isomorphic to $SU_n$ and $V$ is an irreducible representation of $G$. The output of the author’s case-by-case computations is that if $G$ is connected then the quotient is never a smooth manifold.
@article{MMO_2013_74_1_a5,
author = {O. G. Styrt},
title = {On the orbit space of an irreducible representation of the special unitary group},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {175--199},
publisher = {mathdoc},
volume = {74},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a5/}
}
TY - JOUR AU - O. G. Styrt TI - On the orbit space of an irreducible representation of the special unitary group JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2013 SP - 175 EP - 199 VL - 74 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a5/ LA - ru ID - MMO_2013_74_1_a5 ER -
O. G. Styrt. On the orbit space of an irreducible representation of the special unitary group. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 175-199. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a5/