Parallelohedra: a retrospective and new results
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 2, pp. 259-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2012_73_2_a5,
     author = {N. P. Dolbilin},
     title = {Parallelohedra: a retrospective and new results},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {259--276},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a5/}
}
TY  - JOUR
AU  - N. P. Dolbilin
TI  - Parallelohedra: a retrospective and new results
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2012
SP  - 259
EP  - 276
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a5/
LA  - ru
ID  - MMO_2012_73_2_a5
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%T Parallelohedra: a retrospective and new results
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2012
%P 259-276
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a5/
%G ru
%F MMO_2012_73_2_a5
N. P. Dolbilin. Parallelohedra: a retrospective and new results. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 2, pp. 259-276. http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a5/

[1] Fedorov E. S., Nachala ucheniya o figurakh, S.-Peterburg, 1885; М., 1953

[2] Minkowski H., “Allgemeine Lehrsätze über die konvexen Polyeder”, Nach. Ges. Wiss. Göttingen, 1897, 198–219 ; Minkovskii G., “Obschie teoremy o vypuklykh mnogogrannikakh”, UMN, 1936, no. 2, 55–71 | Zbl

[3] Voronoï G., “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. II Mémoire: Recherches sur les paralléloédres primitifs”, J. reine angew. Math., 134 (1908), 198–287 ; Вороной Г. Ф., “Новые приложения непрерывных параметров к теории квадратичных форм. Второй мемуар: Исследование по теории примитивных параллелоэдров”, Собр. соч., т. 2, Изд-во АН УССР, Киев, 1952, 25–368 | Zbl

[4] Delaunay B. N., “Sur la partition regulière de l'espace à 4 dimensions”, Izv. AN SSSR, 1929, no. 1, 79–110 ; No 2, 147–164 | Zbl

[5] Delone B. N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 3 (1937), 16–62 ; 4 (1938), 102–164

[6] Zitomirskij O. K., “Verschärfung eines Satzes von Woronoi”, Zhurn. Leningr. fiz.-mat. ob-va, 2 (1929), 131–151 | Zbl

[7] Venkov B. A., “Ob odnom klasse evklidovykh mnogogrannikov”, Vestnik Leningradskogo Universiteta. Ser. mat., fiz., khim., 9 (1954), 11–31 | MR

[8] Aleksandrov A. D., Vypuklye mnogogranniki, Gostekhizdat, M.–L., 1950 ; Александров А. Д., Избранные труды, т. 2, Выпуклые многогранники, 2-е изд., Наука, Новосибирск, 2007 | MR | Zbl

[9] McMullen P., “Convex bodies which tile space by translation”, Mathematika, 27 (1980), 113–121 | DOI | MR | Zbl

[10] Ryshkov S. S., Baranovskii E. P., “S-tipy $n$-mernykh reshetok i pyatimernye primitivnye paralleloedry (s prilozheniem k teorii pokrytii)”, Tr. MIAN, 137, 1976, 3–131 | MR

[11] Michel L., Ryshkov S. S., Senechal M., “An Extension of Voronoï's theorem on primitive parallelotopes”, Eur. J. Combin., 16:1 (1995), 59–63 | DOI | MR | Zbl

[12] Shtogrin M. I., “Pravilnye razbieniya Dirikhle–Voronogo dlya vtoroi triklinnoi gruppy”, Tr. MIAN, 123, 1973, 3–128 | MR

[13] Engel P., “The contraction types of parallelohedra in $E^5$”, Acta Cryst., 56 (2000), 491–496 | DOI | MR | Zbl

[14] Erdahl R., “Zonotopes, Dicings, and Voronoi's Conjecture on Parallelohedra”, Eur. J. Combin., 20:6 (1999), 527–549 | DOI | MR | Zbl

[15] Ziegler G. M., Lectures on Polytopes, Springer-Verlag, 2008 | MR

[16] Dolbilin N. P., “The extension theorem”, Discrete math., 221:1–3 (2000), 43–59 | DOI | MR | Zbl

[17] Dolbilin N. P., Makarov V. S., “Teorema o prodolzhenii v teorii pravilnykh razbienii i ee prilozheniya”, Tr. MIAN, 239, 2002, 146–169 | MR | Zbl

[18] Engel P., Grishukhin V. P., “There are exactly 222 L-types of primitive five-dimensional lattices”, Eur. J. Combin., 23 (2002), 275–279 | DOI | MR | Zbl

[19] Ordin A., Proof of the Voronoi Conjecture on Parallelotopes in a New Special Case, PhD Thesis, Queen's University, Kingston, 2005 | MR

[20] Dolbilin N. P., “Teoremy Minkovskogo o paralleloedrakh i ikh obobscheniya”, UMN, 62:4 (2007), 157–158 | DOI | MR | Zbl

[21] Dolbilin N. P., “Svoistva granei paralleloedrov”, Geometriya, topologiya i matematicheskaya fizika. II, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Sergeya Petrovicha Novikova, Tr. MIAN, 266, MAIK, M., 2009, 112–126 | MR | Zbl

[22] Dolbilin N. P., “Boris Nikolaevich Delone: zhizn i tvorchestvo”, Klassicheskaya i sovremennaya matematika v pole deyatelnosti Borisa Nikolaevicha Delone, Sbornik statei. K 120-letiyu so dnya rozhdeniya chlena-korrespondenta AN SSSR Borisa Nikolaevicha Delone, Tr. MIAN, 275, MAIK, M., 2011, 7–21 | MR

[23] Dolbilin N., Itoh J., Nara Ch., “Affine equivalent classes of parallelohedra”, Computational geometry, graphs and applications, 9th International conference, Lecture Notes in Comput. Sci., 7033, Springer, Heidelberg, 2011, 55–60 | DOI | MR | Zbl

[24] Magazinov A., An upper bound for a valence of a face in a parallelohedral tiling, 2012, arXiv: 1201.1539[math.MG]

[25] Gavrilyuk A., Garber A., Magazinov A., The Voronoi conjecture for several new classes of parallelohedra, 2012, in preparation