On holomorphic solutions of equations of Korteweg--de Vries type
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 2, pp. 241-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2012_73_2_a4,
     author = {A. V. Domrin},
     title = {On holomorphic solutions of equations of {Korteweg--de} {Vries} type},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {241--257},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a4/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - On holomorphic solutions of equations of Korteweg--de Vries type
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2012
SP  - 241
EP  - 257
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a4/
LA  - ru
ID  - MMO_2012_73_2_a4
ER  - 
%0 Journal Article
%A A. V. Domrin
%T On holomorphic solutions of equations of Korteweg--de Vries type
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2012
%P 241-257
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a4/
%G ru
%F MMO_2012_73_2_a4
A. V. Domrin. On holomorphic solutions of equations of Korteweg--de Vries type. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 2, pp. 241-257. http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a4/

[1] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | MR

[2] Segal G. B., Wilson G., “Loop groups and equations of KdV type”, Publ. Math. IHES, 61 (1985), 5–65 ; Pressli E., Sigal G., Gruppy petel, Mir, M., 1990, 379–442 | MR | Zbl | MR

[3] Shabat B. V., Vvedenie v kompleksnyi analiz, v. II, Nauka, M., 1985 | MR

[4] Domrin A. V., “Meromorfnoe prodolzhenie reshenii solitonnykh uravnenii”, Izv. RAN. Ser. matem., 74:3 (2010), 23–44 | DOI | MR | Zbl

[5] Krichever I. M., “Algebraicheskie krivye i kommutiruyuschie matrichnye differentsialnye operatory”, Funkts. analiz i ego pril., 10:2 (1976), 75–76 | MR | Zbl

[6] Gelfand I. M., Dikii L. A., “Drobnye stepeni operatorov i gamiltonovy sistemy”, Funkts. analiz i ego pril., 10:4 (1976), 13–29 | MR

[7] Dickey L. A., Soliton equations and Hamiltonian systems, Advanced Series in Math. Phys., 2nd ed., World Scientific, River Edge, NJ, 2003 | DOI | MR | Zbl

[8] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy, I”, Dinamicheskie sistemy-4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 4, VINITI, M., 1985, 179–285 | MR

[9] Beals R., Deift P., Tomei C., Direct and inverse scattering on the line, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[10] Manin Yu. I., “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 11, VINITI, M., 1978, 5–152 | MR

[11] Gesztesy F., Race D., Unterkofler K., Weikard R., “On Gelfand–Dickey and Drinfeld–Sokolov systems”, Reviews Math. Phys., 6:2 (1994), 227–276 | DOI | MR | Zbl

[12] Krichever I. M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl

[13] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza, I”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[14] Sattinger D. H., Szmigielski J. S., “Factorization and the dressing method for the Gel'fand–Dikiĭ hierarchy”, Phys. D, 64:1–3 (1993), 1–34 | DOI | MR | Zbl

[15] Domrin A. V., “Zadacha Rimana i matrichnoznachnye potentsialy so skhodyascheisya funktsiei Beikera–Akhiezera”, TMF, 144:3 (2005), 453–471 | DOI | MR | Zbl

[16] Weikard R., “On commuting differential operators”, Electron. J. Differential Equations, 19 (2000), 11 pp. | MR | Zbl

[17] Ains E. L., Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939

[18] Veselov A. P., Shabat A. B., “Odevayuschaya tsepochka i spektralnaya teoriya operatora Shrëdingera”, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | MR | Zbl

[19] Polia G., Segë G., Zadachi i teoremy iz analiza, v. II, 3-e izd., Nauka, M., 1978

[20] Domrin A. V., “Zamechaniya o lokalnom variante metoda obratnoi zadachi rasseyaniya”, Tr. MIAN, 253, 2006, 46–60 | MR

[21] Domrin A. V., “Lokalnaya golomorfnaya zadacha Koshi dlya solitonnykh uravnenii parabolicheskogo tipa”, DAN, 420:1 (2008), 14–17 | MR | Zbl

[22] Bolibrukh A. A., Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009

[23] Salekhov G. S., Fridlender V. R., “K voprosu o zadache, obratnoi zadache Koshi–Kovalevskoi”, UMN, 7:5(51) (1952), 169–192 | MR

[24] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR

[25] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl