Simple spectrum of the tensor product of powers of a mixing automorphism
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 2, pp. 229-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2012_73_2_a3,
     author = {V. V. Ryzhikov},
     title = {Simple spectrum of the tensor product of powers of a mixing automorphism},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {229--239},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a3/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Simple spectrum of the tensor product of powers of a mixing automorphism
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2012
SP  - 229
EP  - 239
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a3/
LA  - ru
ID  - MMO_2012_73_2_a3
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Simple spectrum of the tensor product of powers of a mixing automorphism
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2012
%P 229-239
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a3/
%G ru
%F MMO_2012_73_2_a3
V. V. Ryzhikov. Simple spectrum of the tensor product of powers of a mixing automorphism. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 2, pp. 229-239. http://geodesic.mathdoc.fr/item/MMO_2012_73_2_a3/

[1] Adams T. M., “Smorodinsky's conjecture on rank-one systems”, Proc. Amer. Math. Soc., 126:3 (1998), 739–744 | DOI | MR | Zbl

[2] Ageev O. N., “The homogeneous spectrum problem in ergodic theory”, Invent. Math., 160:2 (2005), 417–446 | DOI | MR | Zbl

[3] Anosov D. V., “O spektralnykh kratnostyakh v ergodicheskoi teorii”, Sovrem. probl. matem., 3, MIAN, M., 2003, 3–85 | DOI | MR

[4] Creutz D., Silva C. E., “Mixing on a class of rank-one transformations”, Ergod. Th. and Dyn. Syst., 24:2 (2004), 407–440 | DOI | MR | Zbl

[5] Danilenko A. I., A survey on spectral multiplicities of ergodic actions, arXiv: 1104.1961

[6] Del Junco A., Lemańczyk M., “Generic spectral properties of measure-preserving maps and applications”, Proc. Amer. Math. Soc., 115:3 (1992), 725–736 | MR | Zbl

[7] Ornstein D., “On the root problem in ergodic theory”, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), v. II, Probability theory, Univ. California Press, Berkeley, Calif., 1972, 347–356 | MR | Zbl

[8] Prikhodko A. A., “Stokhasticheskie konstruktsii potokov ranga 1”, Matem. sb., 192:12 (2001), 61–92 | DOI | MR

[9] Ryzhikov V. V., “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl

[10] Ryzhikov V. V., On Mixing Constructions with Algebraic Spacers, arXiv: 1108.1508

[11] Stepin A. M., “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 801–834 | MR

[12] Tikhonov S. V., “Peremeshivayuschie preobrazovaniya s odnorodnym spektrom”, Matem. sb., 202:8 (2011), 139–160 | DOI | MR | Zbl