Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2012_73_1_a4, author = {O. G. Styrt}, title = {The simplest stationary subalgebras, for compact linear {Lie} algebras}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {133--150}, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a4/} }
O. G. Styrt. The simplest stationary subalgebras, for compact linear Lie algebras. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 1, pp. 133-150. http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a4/
[1] Styrt O. G., “O prostranstve orbit kompaktnoi lineinoi gruppy Li s kommutativnoi svyaznoi komponentoi”, Trudy MMO, 70, 2009, 235–287 | Zbl
[2] Styrt O. G., “O prostranstve orbit trekhmernoi kompaktnoi lineinoi gruppy Li”, Izv. RAN. Ser. matem., 75:4 (2011), 165–188 | DOI | Zbl
[3] Styrt O. G., “O prostranstve orbit trekhmernoi prostoi kompaktnoi lineinoi gruppy Li”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2010, no. 6, 55–56
[4] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | Zbl
[5] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, URSS, M., 1995 | Zbl
[6] Elashvili A. G., “Kanonicheskii vid i statsionarnye podalgebry tochek obschego polozheniya dlya prostykh lineinykh grupp Li”, Funkts. analiz i ego pril., 6:1 (1972), 51–62 | Zbl
[7] Elashvili A. G., “Statsionarnye podalgebry tochek obschego polozheniya dlya neprivodimykh lineinykh grupp Li”, Funkts. analiz i ego pril., 6:2 (1972), 65–78 | Zbl
[8] Shpiz G. B., “Klassifikatsiya neprivodimykh lokalno tranzitivnykh lineinykh grupp Li”, Geometricheskie metody v zadachakh algebry i analiza, Izd-vo YarGU, Yaroslavl, 1978, 152–160
[9] Popov A. M., “Konechnye statsionarnye podgruppy obschego polozheniya prostykh lineinykh grupp Li”, Trudy MMO, 48, 1985, 7–59
[10] Kac V. G., Popov V. L., Vinberg E. B., “Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre”, C. R. Acad. Sci. Paris, 283:12 (1976), 875–878 | Zbl