Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2012_73_1_a3, author = {A. I. Aptekarev and D. N. Tulyakov}, title = {Asymptotics of {Meixner} polynomials and {Christoffel-Darboux} kernels}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {87--132}, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a3/} }
TY - JOUR AU - A. I. Aptekarev AU - D. N. Tulyakov TI - Asymptotics of Meixner polynomials and Christoffel-Darboux kernels JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2012 SP - 87 EP - 132 VL - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a3/ LA - ru ID - MMO_2012_73_1_a3 ER -
A. I. Aptekarev; D. N. Tulyakov. Asymptotics of Meixner polynomials and Christoffel-Darboux kernels. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 1, pp. 87-132. http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a3/
[1] Meixner J., “Orthogonale Polynomsysteme miteinen besonderen Gestalt der erzeugenden Funktion”, J. London Math. Soc., 9 (1934), 6–13 | DOI | MR
[2] Gonchar A. A., “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii”, Matem. sb., 105(147):2 (1978), 147–163 | MR | Zbl
[3] Gonchar A. A., “Ratsionalnye approksimatsii analiticheskikh funktsii”, Sovr. probl. matem., 1, MIAN, M., 2003, 83–106 | DOI | MR
[4] Gonchar A. A., Lagomasino G. L., “O teoreme Markova dlya mnogotochechnykh approksimatsii Pade”, Matem. sb., 105(147):4 (1978), 512–524 | MR | Zbl
[5] Gonchar A. A., Rakhmanov E. A., “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Matem. sb., 125(167):1(9) (1984), 117–127 | MR
[6] Gonchar A. A., Rakhmanov E. A., “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 | MR | Zbl
[7] Gonchar A. A., Rakhmanov E. A., Suetin S. P., “Approksimatsii Pade–Chebyshëva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov”, UMN, 66:6(402) (2011), 3–36 | DOI | MR
[8] Martines-Finkelshtein A., Rakhmanov E. A., Suetin S. P., “Variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnogo kompakta”, Matem. sb., 202:2 (2011), 113–136 | DOI | MR
[9] Suetin S. P., “Nekotoryi analog variatsionnykh formul Adamara i Shiffera”, TMF, 170:3 (2012), 335–341 | DOI
[10] Aptekarev A. I., Lysov V. G., “Sistemy markovskikh funktsii, generiruemye grafami, i asimptotika ikh approksimatsii Ermita–Pade”, Matem. sb., 201:2 (2010), 29–78 | DOI | MR | Zbl
[11] Rakhmanov E. A., “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov diskretnoi peremennoi”, Matem. sb., 187:8 (1996), 109–124 | DOI | MR | Zbl
[12] Dragnev P. D., Saff E. B., “Constrained energy problems with applications to orthogonal polynomials of a discrete variable”, J. Anal. Math., 72 (1997), 223–259 | DOI | MR | Zbl
[13] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl
[14] Saff E. B., Totik V., Logarithmic potentials with external fields, Springer-Verlag, Berlin, 1997 | MR
[15] Sorokin V. N., “O mnogochlenakh sovmestnoi ortogonalnosti dlya diskretnykh mer Meiksnera”, Matem. sb., 201:10 (2010), 137–160 | DOI | MR | Zbl
[16] Filipuk G., Van Assche W., “Recurrence coefficients of a new generalization of the Meixner polynomials”, SIGMA, 7 (2011), 068 | MR | Zbl
[17] Pastur L., Shcherbina M., “Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles”, J. Statist. Phys., 86:1–2 (1997), 109–147 | DOI | MR | Zbl
[18] Pastur L., Shcherbina M., “On the edge universality of the local eigenvalue statistics of matrix models”, Matem. fizika, analiz, geometriya, 10:3 (2003), 335–365 | MR | Zbl
[19] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[20] Deift P., Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Math., 3, Amer. Math. Soc., Providence, RI, 1999 | MR
[21] Aptekarev A. I., Lysov V. G., Tulyakov D. N., “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sb., 202:2 (2011), 3–56 | DOI | MR | Zbl
[22] Totik V., “Universality and fine zero spacing on general sets”, Ark. Mat., 47:2 (2009), 361–391 | DOI | MR | Zbl
[23] Lubinsky D., “A new approach to universality limits involving orthogonal polynomials”, Ann. of Math. (2), 170:2 (2009), 915–939 | DOI | MR | Zbl
[24] Borodin A., Olshanskii G., “Meixner polynomials and random partitions”, Moscow Math. J., 6:4 (2006), 629–655 | MR | Zbl
[25] Borodin A., Olshanskii G., “Random partitions and the gamma kernel”, Adv. Math., 194:1 (2005), 141–202 | DOI | MR | Zbl
[26] Johansson K., “Shape fluctuations and random matrices”, Comm. Math. Phys., 209:2 (2000), 437–476 | DOI | MR | Zbl
[27] Baik J., Kriecherbauer T., McLaughlin K. T.-R., Miller P. D., Discrete Orthogonal Polynomials: asymptotics and application, Annals of Mathematics Studies, 164, Princeton Univ. Press, Princeton, NJ, 2007 | MR | Zbl
[28] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | MR | Zbl
[29] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[30] Plancherel M., Rotach W., “Sur les valeures asymptotiques des polynomes d'Hermite $H_n(x)=(-1)^n e^{x^2/2}\,d^ne^{-x^2/2}/dx^n$”, Comm. Math. Helv., 1 (1929), 227–254 | DOI | MR | Zbl
[31] Fokas A. S., Its A. R., Kitaev A. V., “The isomonodromy approach to matrix models in 2D quantum gravity”, Comm. Math. Phys., 147:2 (1992), 395–430 | DOI | MR | Zbl
[32] McLaughlin K. T.-R., Miller P. D., “The $\overline{\partial}$ steepest descent method for orthogonal polynomials on the real line with varying weights”, Int. Math. Res. Notices, 2008, Art. ID rnn075 | MR
[33] Borodin A., “Riemann–Hilbert problem and discrete Bessel kernel”, Int. Math. Res. Notices, 9 (2000), 467–494 | DOI | MR | Zbl
[34] Dai D., Wong R., “Global asymptotics of Krawtchouk polynomials — a Riemann–Hilbert approach”, Chin. Ann. Math. Ser. B, 28:1 (2007), 1–34 | DOI | MR | Zbl
[35] Ou C., Wong R., “The Riemann–Hilbert approach to global asymptotics of discrete orthogonal polynomials with infinite nodes”, Anal. Appl. (Singap.), 8:3 (2010), 247–286 | DOI | MR | Zbl
[36] Tulyakov D. N., “Asimptotika tipa Plansherelya–Rotakha dlya reshenii lineinykh rekurrentnykh sootnoshenii s ratsionalnymi koeffitsientami”, Matem. sb., 201:9 (2010), 111–158 | DOI | MR | Zbl
[37] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover, New York, 1972
[38] Aptekarev A. I., Tulyakov D. N., “Asimptoticheskie rezhimy v zone nasyscheniya dlya C-D-yader ansamblya ortogonalnykh mnogochlenov Meiksnera”, UMN, 66:1 (2011), 181–182 | DOI | MR | Zbl