Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2012_73_1_a2, author = {A. A. Aizenberg}, title = {Topological applications of {Stanley-Reisner} rings of simplicial complexes}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {47--85}, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a2/} }
TY - JOUR AU - A. A. Aizenberg TI - Topological applications of Stanley-Reisner rings of simplicial complexes JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2012 SP - 47 EP - 85 VL - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a2/ LA - ru ID - MMO_2012_73_1_a2 ER -
A. A. Aizenberg. Topological applications of Stanley-Reisner rings of simplicial complexes. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 1, pp. 47-85. http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a2/
[1] Avramov L. L., Golod E. S., “Ob algebre gomologii kompleksa Kozyulya lokalnogo koltsa Gorenshteina”, Matem. zametki, 9:1 (1971), 53–58 | MR | Zbl
[2] Aizenberg A. A., Bukhshtaber V. M., “Nerv-kompleksy i moment-ugol-prostranstva vypuklykh mnogogrannikov”, Trudy MIAN, 275, 2011, 22–54 | MR
[3] Baclawski K., “Cohen–Macaulay connectivity and geometric lattices”, European J. Combinatorics, 3 (1982), 293–305 | MR | Zbl
[4] Barnette D., “Graph theorems for manifolds”, Israel J. Math., 16 (1973), 63–72 | DOI | MR
[5] Baskakov I. V., “Kogomologii $K$-stepenei prostranstv i kombinatorika simplitsialnykh razbienii”, UMN, 57:5(347) (2002), 147–148 | DOI | MR | Zbl
[6] Baskakov I. V., Bukhshtaber V. M., Panov T. E., “Algebry kletochnykh kotsepei i deistviya torov”, UMN, 59:3(357) (2004), 159–160 | DOI | MR | Zbl
[7] Bing R. H., The geometric topology of 3-manifolds, Colloquium Publications, 40, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl
[8] Bruns W., Gubeladze J., “Combinatorial invariance of Stanley–Reisner rings”, Georgian Math. J., 3:4 (1996), 315–318 | DOI | MR | Zbl
[9] Bruns W., Herzog J., Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[10] Bukhshtaber V. M., Panov T. E., “Deistviya torov, kombinatornaya topologiya i gomologicheskaya algebra”, UMN, 55:5(335) (2000), 3–106 | DOI | MR | Zbl
[11] Bukhshtaber V. M., Panov T. E., Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR
[12] Buchstaber V., Panov T. E., Ray N., “Spaces of polytopes and cobordism of quasitoric manifolds”, Moscow Math. J., 7:2 (2007), 219–242 | MR | Zbl
[13] Grünbaum B., Convex polytopes, Graduate Texts in Mathematics, 221, 2nd ed., Springer-Verlag, New York, 2003 | DOI | MR
[14] Haghighi H., Zaare-Nahandi R., Yassemi S., A generalization of $k$-Cohen–Macaulay complexes, 2009, arXiv: 0912.4097v1
[15] Hibi T., “Level rings and algebras with straightening laws”, Journal of Algebra, 117 (1988), 343–362 | DOI | MR | Zbl
[16] Hibi T., Terai N., “Finite free resolutions and 1-skeletons of simplicial complexes”, J. Algebraic Combin., 6:1 (1997), 89–93 | MR | Zbl
[17] Hochster M., “Cohen–Macaulay rings, combinatorics, and simplicial complexes”, Ring theory II, Proc. Second Conf. (Univ. Oklahoma, Norman, Okla., 1975), Lecture Notes in Pure and Appl. Math., 26, Dekker, New York, 1977, 171–223 | MR
[18] Macaulay F. S., “Some properties of enumeration on the theory of modular systems”, Proc. London Math. Soc., 26 (1927), 531–555 | DOI | MR | Zbl
[19] Miyazaki M., “On 2-Buchsbaum complexes”, J. Math. Kyoto Univ., 30 (1990), 367–392 | MR | Zbl
[20] Munkres J. R., “Topological results in combinatorics”, Michigan Math. J., 31:1 (1984), 113–128 | DOI | MR | Zbl
[21] Reisner G., “Cohen–Macaulay quotients of polynomial rings”, Advances in Math., 21:1 (1976), 30–49 | DOI | MR | Zbl
[22] Stanley R., Combinatorics and Commutative Algebra, Progress in Mathematics, 41, Birkhäuser, Boston, MA, 1996 | MR | Zbl
[23] Ziegler G. M., Lectures on Polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995 | DOI | MR | Zbl