The existence of invariant Einstein metrics on a compact homogeneous space
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 1, pp. 1-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2012_73_1_a0,
     author = {M. M. Graev},
     title = {The existence of invariant {Einstein} metrics on a compact homogeneous space},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--35},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a0/}
}
TY  - JOUR
AU  - M. M. Graev
TI  - The existence of invariant Einstein metrics on a compact homogeneous space
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2012
SP  - 1
EP  - 35
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a0/
LA  - ru
ID  - MMO_2012_73_1_a0
ER  - 
%0 Journal Article
%A M. M. Graev
%T The existence of invariant Einstein metrics on a compact homogeneous space
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2012
%P 1-35
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a0/
%G ru
%F MMO_2012_73_1_a0
M. M. Graev. The existence of invariant Einstein metrics on a compact homogeneous space. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 1, pp. 1-35. http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a0/

[1] Besse A. L., Mnogoobraziya Einshteina, V 2-kh t., Mir, M., 1990 | MR | Zbl

[2] Böhm C., “Homogeneous Einstein metrics and simplicial complexes”, J. Differential Geom., 67:1 (2004), 79–165 | MR

[3] Böhm C., Kerr M. M., “Low-dimensional homogeneous Einstein manifold”, Trans. Amer. Math. Soc., 358:4 (2006), 1455–1468 | DOI | MR

[4] Böhm C., Wang M., Ziller W., “A variational approach for compact homogeneous Einstein manifolds”, Geom. Funct. Anal., 14:4 (2004), 681–733 | DOI | MR

[5] Bochnak J., Coste M., Roy M.-F., Real Algebraic Geometry, Ergeb. Math. Grenzgeb. (3), 36, Springer-Verlag, Berlin, 1998 | MR | Zbl

[6] Gibbons G. W., Lu H., Pope C. N., Einstein Metrics on Group Manifolds and Cosets, arXiv: 0903.2493 | MR

[7] Jensen G., “The Scalar Curvature of Left-Invariant Riemannian Metrics”, Indiana Univ. Math. J., 20:12 (1971), 1125–1144 | DOI | MR

[8] Wang M., Ziller W., “On normal homogeneous Einstein manifolds”, Ann. Sci. École Norm. Sup. (4), 18:4 (1985), 563–633 | MR | Zbl

[9] Wang M., Ziller W., “Existence and nonexistence of homogeneous Einstein metrics”, Invent. Math., 84:1 (1986), 177–194 | DOI | MR | Zbl