Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2012_73_1_a0, author = {M. M. Graev}, title = {The existence of invariant {Einstein} metrics on a compact homogeneous space}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {1--35}, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a0/} }
M. M. Graev. The existence of invariant Einstein metrics on a compact homogeneous space. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 73 (2012) no. 1, pp. 1-35. http://geodesic.mathdoc.fr/item/MMO_2012_73_1_a0/
[1] Besse A. L., Mnogoobraziya Einshteina, V 2-kh t., Mir, M., 1990 | MR | Zbl
[2] Böhm C., “Homogeneous Einstein metrics and simplicial complexes”, J. Differential Geom., 67:1 (2004), 79–165 | MR
[3] Böhm C., Kerr M. M., “Low-dimensional homogeneous Einstein manifold”, Trans. Amer. Math. Soc., 358:4 (2006), 1455–1468 | DOI | MR
[4] Böhm C., Wang M., Ziller W., “A variational approach for compact homogeneous Einstein manifolds”, Geom. Funct. Anal., 14:4 (2004), 681–733 | DOI | MR
[5] Bochnak J., Coste M., Roy M.-F., Real Algebraic Geometry, Ergeb. Math. Grenzgeb. (3), 36, Springer-Verlag, Berlin, 1998 | MR | Zbl
[6] Gibbons G. W., Lu H., Pope C. N., Einstein Metrics on Group Manifolds and Cosets, arXiv: 0903.2493 | MR
[7] Jensen G., “The Scalar Curvature of Left-Invariant Riemannian Metrics”, Indiana Univ. Math. J., 20:12 (1971), 1125–1144 | DOI | MR
[8] Wang M., Ziller W., “On normal homogeneous Einstein manifolds”, Ann. Sci. École Norm. Sup. (4), 18:4 (1985), 563–633 | MR | Zbl
[9] Wang M., Ziller W., “Existence and nonexistence of homogeneous Einstein metrics”, Invent. Math., 84:1 (1986), 177–194 | DOI | MR | Zbl