On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 2, pp. 249-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the spaces of boundary-preserving maps of an annulus and a thickened torus, we construct open sets in which every map has intermingled basins of attraction, as predicted by I. Kan. Namely, the attraction basins of each of the boundary components are everywhere dense in the phase space for such maps. Moreover, the Hausdorff dimension of the set of points that are not attracted by either of the components proves to be less than the dimension of the phase space itself, which strengthens the result following from the argument due to Bonatti, Diaz, and Viana.
@article{MMO_2011_72_2_a3,
     author = {V. A. Kleptsyn and P. S. Saltykov},
     title = {On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {249--280},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2011_72_2_a3/}
}
TY  - JOUR
AU  - V. A. Kleptsyn
AU  - P. S. Saltykov
TI  - On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2011
SP  - 249
EP  - 280
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2011_72_2_a3/
LA  - ru
ID  - MMO_2011_72_2_a3
ER  - 
%0 Journal Article
%A V. A. Kleptsyn
%A P. S. Saltykov
%T On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2011
%P 249-280
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2011_72_2_a3/
%G ru
%F MMO_2011_72_2_a3
V. A. Kleptsyn; P. S. Saltykov. On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 2, pp. 249-280. http://geodesic.mathdoc.fr/item/MMO_2011_72_2_a3/

[BLR] Bleher P., Lyubich M., Roeder R., Lee–Yang zeros for DHL and 2D rational dynamics, I. Foliation of the physical cylinder, arXiv: 1009.4691 [math.DS]

[BDV05] Bonatti C., Diaz L. J., Viana M., Dynamics Beyond Uniform Hyperbolicity, Springer, 2005 | MR

[BM07] Bonifant A., Milnor J., Schwarzian derivatives and cylinder maps, Preprint, 2007 | MR | Zbl

[DK07] Deroin B., Kleptsyn V., “Random Conformal Dynamical Systems”, Geometry and Functional Analysis, 17:4 (2007), 1043–1105 | DOI | MR | Zbl

[GI96] Gorodetski A., Yu. Ilyashenko, “Minimal and strange attractors”, International Journal of Bifurcation and Chaos, 6:6 (1996), 1177–1183 | DOI | MR

[GI99] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye novye grubye svoistva invariantnykh mnozhestv i attraktorov dinamicheskikh sistem”, Funkts. analiz i ego prilozh., 33:2 (1999), 16–30 | MR | Zbl

[GI00] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye svoistva kosykh proizvedenii nad podkovoi i solenoidom”, Trudy Matematicheskogo instituta im. V. A. Steklova, 231, 2000, 96–118 | Zbl

[G01] Gorodetskii A. S., Minimalnye attraktory i chastichno giperbolicheskie invariantnye mnozhestva dinamicheskikh sistem, Diss. ... kand. f.-m. n., mekh.-mat. f-t MGU, 2001

[G06] Gorodetskii A. S., “Regulyarnost tsentralnykh sloev chastichno giperbolicheskikh mnozhestv i prilozheniya”, Izv. RAN. Ser. matem., 70:6 (2006), 19–44 | MR | Zbl

[GIKN05] Gorodetskii A. S., Ilyashenko Yu. S., Kleptsyn V. A., Nalskii M. B., “Neustranimost nulevykh pokazatelei Lyapunova”, Funkts. analiz i ego prilozh., 39:1 (2005), 27–38 | MR | Zbl

[GT02] Gurevich B. M., Tempelman A. A., “Khausdorfova razmernost mnozhestva tipichnykh tochek dlya gibbsovskikh mer”, Funkts. analiz i ego prilozh., 36:3 (2002), 68–71 | MR | Zbl

[I08] Ilyashenko Yu. S., “Diffeomorfizmy s peremezhayuschimisya basseinami prityazheniya”, Funkts. analiz i ego prilozh., 42:4 (2008), 60–71 | MR | Zbl

[IKS08] Yu. Ilyashenko, Kleptsyn V., Saltykov P., “Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins”, Journal of Fixed Point Theory and Applications, 3:2 (2008), 449–463 | DOI | MR | Zbl

[HPS77] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Mathematics, 583, 1977, ii+149 pp. | MR | Zbl

[IN10] Ilyashenko Yu., Negut A., Holder properties of perturbed skew products and Fubini regained, arXiv: 1005.0173

[K94] Kan I., “Open sets of diffeomorphisms having two attractors, each with everywhere dense basin”, Bull. Amer. Math. Soc., 31 (1994), 68–74 | DOI | MR | Zbl

[KR] Kleptsyn V., Ryzhov D., Special ergodic theorem, a note in preparation

[Mi97] Milnor J., “Fubini foiled: Katok's paradoxical example in measure theory”, Math. Intelligencer, 19:2 (1997), 30–32 | DOI | MR | Zbl

[Os10] Osipov A. V., “Neplotnost orbitalnogo svoistva otslezhivaniya otnositelno $C^1$-topologii”, Algebra i analiz, 22:2 (2010), 127–163

[Pa00] Palis J., “A global view of dynamics and a conjecture on the dynamics of finitude of attractors”, Géometrie complexe et systèmes dynamiques (Orsay 1995), Astérisque, 261, 2000, xiii–xiv; 335–347 | MR

[Pa05] Palis J., “A global perspective for non-conservative dynamics”, Annales de l'Institut Henri Poincare, 22 (2005), 485–507 | MR | Zbl

[Ru01] Ruelle D., “Historical behaviour in smooth dynamical systems”, Global analysis of dynamical systems, Inst. Phys., Bristol, 2001, 63–66 | MR | Zbl

[S10] Saltykov P. S., “Spetsialnaya ergodicheskaya teorema dlya diffeomorfizmov Anosova na dvumernom tore”, Funkts. analiz i ego prilozh., 45:1 (2011), 69–78 | MR

[T08] Takens F., “Orbits with histroric behaviour, or non-existence of averages”, Nonlinearity, 21 (2008), T33–T36 | DOI | MR | Zbl

[Var08] Varadhan S. R. S., “Large deviations”, Annals of Probability, 36:2 (2008), 397–419 | DOI | MR | Zbl

[WS00] Wilkinson A., Shub M., “Pathological foliations and removable zero exponents”, Inventiones mathematicae, 139 (2000), 495–508 | DOI | MR | Zbl

[Y90] Young L.-S., “Some large deviation results for dynamical systems”, Trans. AMS, 318:2 (1990), 525–543 | Zbl

[Y03] Young L.-S., “Entropy in dynamical systems”, Entropy, eds. A. Greven, G. Keller and G. Warnecke, Princeton Univ. Press, 2003, 313–328 | MR