On solvable spherical subgroups of semisimple algebraic groups
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 1, pp. 5-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a structure theory of connected solvable spherical subgroups in semisimple algebraic groups. Based on this theory, we obtain an explicit classification of all such subgroups up to conjugacy.
@article{MMO_2011_72_1_a1,
     author = {R. S. Avdeev},
     title = {On solvable spherical subgroups of semisimple algebraic groups},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {5--62},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a1/}
}
TY  - JOUR
AU  - R. S. Avdeev
TI  - On solvable spherical subgroups of semisimple algebraic groups
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2011
SP  - 5
EP  - 62
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a1/
LA  - ru
ID  - MMO_2011_72_1_a1
ER  - 
%0 Journal Article
%A R. S. Avdeev
%T On solvable spherical subgroups of semisimple algebraic groups
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2011
%P 5-62
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a1/
%G ru
%F MMO_2011_72_1_a1
R. S. Avdeev. On solvable spherical subgroups of semisimple algebraic groups. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 1, pp. 5-62. http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a1/

[1] Krämer M., “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38:2 (1979), 129–153 | MR

[2] Mikityuk I. V., “Ob integriruemosti invariantnykh gamiltonovykh sistem s odnorodnymi konfiguratsionnymi prostranstvami”, Matem. sb., 129(171):4 (1986), 514–534 | MR | Zbl

[3] Brion M., “Classification des espaces homogènes sphériques”, Compositio Math., 63:2 (1987), 189–208 | MR | Zbl

[4] Yakimova O. S., “Slabo simmetricheskie prostranstva poluprostykh grupp Li”, Vestnik Mosk. un-ta. Ser. 1, matem., mekh., 2002, no. 2, 57–60 | MR

[5] Luna D., Sous-groupes sphériques résolubles, Prépublication de l'Institut Fourier. No. 241, 1993

[6] Luna D., “Variétés sphériques de type A”, IHÉS Publ. Math., 94 (2001), 161–226 | DOI | MR | Zbl

[7] Bravi P., Pezzini G., Wonderful varieties of type $B$ and $C$, arXiv: 0909.3771v1

[8] Cupit-Foutou S., Wonderful varieties: a geometrical realization, arXiv: 0907.2852v3

[9] Avdeev R., “On solvable spherical subgroups of semisimple algebraic groups”, Oberwolfach Reports, 7:2 (2010), 1105–1108

[10] Vinberg E.B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, URSS, M., 1995, 344 pp.

[11] Montagard P.-L., “Une nouvelle propriété de stabilité du pléthysme”, Comment. Math. Helvetici, 71 (1996), 475–505 | DOI | MR | Zbl

[12] Vinberg E. B., “Kommutativnye odnorodnye prostranstva i koizotropnye simplekticheskie deistviya”, Uspekhi mat. nauk, 56:1 (2001), 3–62 | MR | Zbl