Turning points, phase shifts, and quantization rules in ordinary differential equations with a local rapidly decreasing nonlinearity
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 56 (1995), pp. 107-176
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MMO_1995_56_a3,
author = {M. V. Karasev and A. V. Pereskokov},
title = {Turning points, phase shifts, and quantization rules in ordinary differential equations with a~local rapidly decreasing nonlinearity},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {107--176},
year = {1995},
volume = {56},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_1995_56_a3/}
}
TY - JOUR AU - M. V. Karasev AU - A. V. Pereskokov TI - Turning points, phase shifts, and quantization rules in ordinary differential equations with a local rapidly decreasing nonlinearity JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 1995 SP - 107 EP - 176 VL - 56 UR - http://geodesic.mathdoc.fr/item/MMO_1995_56_a3/ LA - ru ID - MMO_1995_56_a3 ER -
%0 Journal Article %A M. V. Karasev %A A. V. Pereskokov %T Turning points, phase shifts, and quantization rules in ordinary differential equations with a local rapidly decreasing nonlinearity %J Trudy Moskovskogo matematičeskogo obŝestva %D 1995 %P 107-176 %V 56 %U http://geodesic.mathdoc.fr/item/MMO_1995_56_a3/ %G ru %F MMO_1995_56_a3
M. V. Karasev; A. V. Pereskokov. Turning points, phase shifts, and quantization rules in ordinary differential equations with a local rapidly decreasing nonlinearity. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 56 (1995), pp. 107-176. http://geodesic.mathdoc.fr/item/MMO_1995_56_a3/