Необходимые условия существования решения типа спиральной волны
Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 3, Tome 3 (2009), pp. 85-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMKZ_2009_3_a19,
     author = {A. K. Volosova},
     title = {{\CYRN}{\cyre}{\cyro}{\cyrb}{\cyrh}{\cyro}{\cyrd}{\cyri}{\cyrm}{\cyrery}{\cyre} {\cyru}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyri}{\cyrya} {\cyrs}{\cyru}{\cyrshch}{\cyre}{\cyrs}{\cyrt}{\cyrv}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyrya} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrt}{\cyri}{\cyrp}{\cyra} {\cyrs}{\cyrp}{\cyri}{\cyrr}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrishrt} {\cyrv}{\cyro}{\cyrl}{\cyrn}{\cyrery}},
     journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi},
     pages = {85--87},
     publisher = {mathdoc},
     volume = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMKZ_2009_3_a19/}
}
TY  - JOUR
AU  - A. K. Volosova
TI  - Необходимые условия существования решения типа спиральной волны
JO  - Matematicheskoe Modelirovanie i Kraevye Zadachi
PY  - 2009
SP  - 85
EP  - 87
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMKZ_2009_3_a19/
LA  - ru
ID  - MMKZ_2009_3_a19
ER  - 
%0 Journal Article
%A A. K. Volosova
%T Необходимые условия существования решения типа спиральной волны
%J Matematicheskoe Modelirovanie i Kraevye Zadachi
%D 2009
%P 85-87
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMKZ_2009_3_a19/
%G ru
%F MMKZ_2009_3_a19
A. K. Volosova. Необходимые условия существования решения типа спиральной волны. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 3, Tome 3 (2009), pp. 85-87. http://geodesic.mathdoc.fr/item/MMKZ_2009_3_a19/

[1] Maslov V. P., Danilov V. G., Volosov K. A., Matematicheskoe modelirovanie protsessov teplomassoperenosa (evolyutsiya dissipativnykh struktur), Nauka, M., 1987, 352 pp.

[2] Maslov V. P., Danilov V. G., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer Academic Publishers, Dordrecht–Boston–London, 1995, 316 pp.

[3] Krinsky V. I., Agladze K. I., “An excellent examples of self-organization in nonequilibrium systems”, Nature, 296:1, 420–426

[4] Danilov V. G., Lukashev E. A., “Matematicheskaya model nelineinogo reverberatora maloi amplitudy”, Biofizika, 35:5 (1990), 859–863

[5] Krinskii V. I., Medvinskii A. B., Panfilov A. V., Evolyutsiya avtovolnovykh vikhrei (volny v serdtse), Znanie, M., 1986, 48 pp.

[6] Volosov K. A., “Konstruirovanie reshenii kvazilineinykh parabolicheskikh uravnenii v parametricheskoi forme”, Differents. uravneniya, 43:4 (2007), 492–497

[7] Volosov K. A., Metodika analiza evolyutsionnykh sistem s raspredelënnymi parametrami, Dissert. ... d.f-m.n., MIEM, M., 2007, 263 pp.

[8] Volosov K. A., “Formuly dlya tochnykh reshenii kvazilineinykh uravnenii s chastnymi proizvodnymi v neyavnoi forme”, DAN, 77:1 (2008), 11–14

[9] Volosov K. A., “Konstruirovanie reshenii kvazilineinykh uravnenii s chastnymi proizvodnymi”, Sib. zhurn. industr. matem., 11:2(34) (2008), 29–39