Mathematical models of the fractional oscillator, setting and structure of the Cauchy problem
Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 1, Tome 1 (2009), pp. 177-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMKZ_2009_1_a42,
     author = {E. N. Ogorodnikov},
     title = {Mathematical models of the fractional oscillator, setting and structure of the {Cauchy} problem},
     journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi},
     pages = {177--181},
     publisher = {mathdoc},
     volume = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMKZ_2009_1_a42/}
}
TY  - JOUR
AU  - E. N. Ogorodnikov
TI  - Mathematical models of the fractional oscillator, setting and structure of the Cauchy problem
JO  - Matematicheskoe Modelirovanie i Kraevye Zadachi
PY  - 2009
SP  - 177
EP  - 181
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMKZ_2009_1_a42/
LA  - ru
ID  - MMKZ_2009_1_a42
ER  - 
%0 Journal Article
%A E. N. Ogorodnikov
%T Mathematical models of the fractional oscillator, setting and structure of the Cauchy problem
%J Matematicheskoe Modelirovanie i Kraevye Zadachi
%D 2009
%P 177-181
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMKZ_2009_1_a42/
%G ru
%F MMKZ_2009_1_a42
E. N. Ogorodnikov. Mathematical models of the fractional oscillator, setting and structure of the Cauchy problem. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 1, Tome 1 (2009), pp. 177-181. http://geodesic.mathdoc.fr/item/MMKZ_2009_1_a42/

[1] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii, Nauka, M., 1982, 304 pp.

[2] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[3] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[4] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977, 261 pp.

[5] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp.

[6] Kronover R., Fraktaly i khaos v dinamicheskikh sistemakh, Tekhnosfera, M., 2006, 488 pp.

[7] Meilanov R. P., Yanpolov M. S., “Osobennosti fazovoi traektorii “fraktalnogo” ostsillyatora”, Pisma v ZhTF, 28:1 (2002), 67–73

[8] Nakhusheva V. A., Matematicheskoe modelirovanie nelokalnykh fizicheskikh protsessov v sredakh s fraktalnoi strukturoi, Avtoref. dis. ... d-ra fiz.-mat. nauk, Taganrog, 2008, 30 pp.

[9] Beibalaev V. D., Matematicheskie modeli neravnovesnykh protsessov v sredakh s fraktalnoi strukturoi, Avtoref. dis. ... kand. fiz.-mat. nauk, Makhachkala, 2009, 18 pp.

[10] Butenin N. V., Neimark Yu. N., Fufaev N. A., Vvedenie v teoriyu nelineinykh kolebanii, Nauka, M., 1976, 384 pp.

[11] Chadaev V. A., “Zadacha Koshi dlya kvazilineinogo uravneniya drobnogo poryadka”, Dokl. AMAN, 8:2 (2006), 73–78

[12] Ogorodnikov E. N., Yashagin N. C., “Nekotorye spetsialnye funktsii v reshenii zadachi Koshi dlya odnogo drobnogo ostsillyatsionnogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2009, no. 1(18), 276–279

[13] Ogorodnikov E. N., Yashagin N. C., “Nekotorye svoistva operatorov s funktsiyami tipa Mittag–Lefflera v yadrakh”, Trudy Shestoi Vserossiiskoi konferentsii s mezhdunarodnym uchastiem, Chast 3, Matematicheskoe modelirovanie i kraevye zadachi, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2009, 181–188