Краевая задача для уравнения диффузии континуального порядка
Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Tome 3 (2007), pp. 190-192
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MMKZ_2007_3_a61,
author = {B. I. Efendiev},
title = {{\CYRK}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyra}{\cyrya} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyra} {\cyrd}{\cyrl}{\cyrya} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrd}{\cyri}{\cyrf}{\cyrf}{\cyru}{\cyrz}{\cyri}{\cyri} {\cyrk}{\cyro}{\cyrn}{\cyrt}{\cyri}{\cyrn}{\cyru}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrp}{\cyro}{\cyrr}{\cyrya}{\cyrd}{\cyrk}{\cyra}},
journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi},
pages = {190--192},
year = {2007},
volume = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a61/}
}
B. I. Efendiev. Краевая задача для уравнения диффузии континуального порядка. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Tome 3 (2007), pp. 190-192. http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a61/
[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp. | Zbl
[2] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii, Nauka, M., 1982, 304 pp. | MR
[3] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966, 724 pp. | MR | Zbl
[4] Pskhu A. V., Kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo i kontinualnogo poryadka, Izd-vo KBNTs RAN, Nalchik, 2005, 186 pp.
[5] Pskhu A. V., “Fundamentalnoe reshenie obyknovennogo differentsialnogo uravneniya kontinualnogo poryadka”, Dokl. Adyg. (Cherkes.) Mezh-dunar. akad.nauk, 9:1 (2007), 50–54