Периодическая краевая задача для уравнения Ван Дер Поля
Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Tome 3 (2007), pp. 109-112
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MMKZ_2007_3_a33,
author = {I. Yu. Kolpakov},
title = {{\CYRP}{\cyre}{\cyrr}{\cyri}{\cyro}{\cyrd}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyra}{\cyrya} {\cyrk}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyra}{\cyrya} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyra} {\cyrd}{\cyrl}{\cyrya} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrya} {{\CYRV}{\cyra}{\cyrn}} {{\CYRD}{\cyre}{\cyrr}} {{\CYRP}{\cyro}{\cyrl}{\cyrya}}},
journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi},
pages = {109--112},
year = {2007},
volume = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a33/}
}
I. Yu. Kolpakov. Периодическая краевая задача для уравнения Ван Дер Поля. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Tome 3 (2007), pp. 109-112. http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a33/
[1] Kolpakov I. Yu., O razreshimosti kvazilineinykh operatornykh uravnenii s neobratimoi lineinoi chastyu, Perm. gos. tekhn. un-t., Perm, 2003, 9 pp., (Dep. v VINITI 29.05.03 # 1049-V2003)