Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMKZ_2007_3_a22, author = {I. I. Golichev}, title = {{\CYRO} {\cyrs}{\cyrh}{\cyro}{\cyrd}{\cyri}{\cyrm}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrm}{\cyre}{\cyrt}{\cyro}{\cyrd}{\cyra} {\cyrt}{\cyri}{\cyrp}{\cyra} {{\CYRN}{\cyrsftsn}{\cyryu}{\cyrt}{\cyro}{\cyrn}{\cyra}} {\cyrd}{\cyrl}{\cyrya} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {{\CYRN}{\cyra}{\cyrv}{\cyrsftsn}{\cyre}--{\CYRS}{\cyrt}{\cyro}{\cyrk}{\cyrs}{\cyra}}}, journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi}, pages = {73--75}, publisher = {mathdoc}, volume = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a22/} }
I. I. Golichev. О сходимости метода типа Ньютона для решения уравнений Навье--Стокса. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Tome 3 (2007), pp. 73-75. http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a22/
[2] Temam R., Uravneniya Nave—Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | MR | Zbl
[3] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, 2-oe izdanie; pererab. i dop., Fizmatlit, M., 1994, 448 pp. | Zbl
[4] Golichev I. I., Reshenie nekotorykh zadach dlya parabolicheskikh uravnenii metodom posledovatelnykh priblizhenii, BNTs UrO AN SSSR, Ufa, 1989, 172 pp. | Zbl