Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMKZ_2007_3_a1, author = {V. V. Abramov}, title = {{\CYRI}{\cyrs}{\cyrs}{\cyrl}{\cyre}{\cyrd}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyre} {\cyru}{\cyrs}{\cyrt}{\cyro}{\cyrishrt}{\cyrch}{\cyri}{\cyrv}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrm}{\cyre}{\cyrt}{\cyro}{\cyrd}{\cyra} {{\CYRA}{\cyrd}{\cyra}{\cyrm}{\cyrs}{\cyra}--{\CYRM}{\cyru}{\cyrl}{\cyrt}{\cyro}{\cyrn}{\cyra}} {\cyrp}{\cyrr}{\cyri} {\cyrm}{\cyro}{\cyrd}{\cyre}{\cyrl}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyri} {\cyrt}{\cyre}{\cyrs}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyrb}{\cyrl}{\cyri}{\cyrzh}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {\cyrn}{\cyre}{\cyrb}{\cyre}{\cyrs}{\cyrn}{\cyrery}{\cyrh} {\cyrt}{\cyre}{\cyrl}}, journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi}, pages = {13--17}, publisher = {mathdoc}, volume = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a1/} }
TY - JOUR AU - V. V. Abramov TI - Исследование устойчивости метода Адамса--Мултона при моделировании тесных сближений небесных тел JO - Matematicheskoe Modelirovanie i Kraevye Zadachi PY - 2007 SP - 13 EP - 17 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a1/ LA - ru ID - MMKZ_2007_3_a1 ER -
V. V. Abramov. Исследование устойчивости метода Адамса--Мултона при моделировании тесных сближений небесных тел. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Tome 3 (2007), pp. 13-17. http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a1/
[1] Kholl Dzh., Uatt Dzh., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979, 312 pp.
[2] Newhall X. X., Standish E., M. Jr., Williams J. G., “DE 102: a numerically integrated ephemeris of the Moon and planets spanning forty-four centuries”, Astron. and Astrophys., 1983, no. 125, 150–167
[3] Abramov V. V., “Primenenie metodov Adamsa k resheniyu uravnenii dvizheniya bolshikh planet, Luny i Solntsa”, Mat. modelirovanie i kraevye zadachi, Tr. Tretei Vseros. nauchn. konf. Ch. 3: Differentsialnye uravneniya i kraevye zadachi, SamGTU, Samara, 2006, 13–19
[4] Zausaev A. F., Zausaev A. A., Olkhin A. G., “Primenenie metoda Everkharta 31-go poryadka dlya resheniya uravnenii dvizheniya bolshikh planet”, Tr. GAISh. VAK-2004, LXXV, 2004, 209–210
[5] Abramov V. V., “Matematicheskoe modelirovanie dvizheniya malykh tel Solnechnoi sistemy na osnove metodov Adamsa”, Vestnik Sam. gos. tekh. unta. Ser.: Fiz.-mat. nauki, 2006, no. 43, 192–194