Исследование устойчивости метода Адамса--Мултона при моделировании тесных сближений небесных тел
Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Tome 3 (2007), pp. 13-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMKZ_2007_3_a1,
     author = {V. V. Abramov},
     title = {{\CYRI}{\cyrs}{\cyrs}{\cyrl}{\cyre}{\cyrd}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyre} {\cyru}{\cyrs}{\cyrt}{\cyro}{\cyrishrt}{\cyrch}{\cyri}{\cyrv}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrm}{\cyre}{\cyrt}{\cyro}{\cyrd}{\cyra} {{\CYRA}{\cyrd}{\cyra}{\cyrm}{\cyrs}{\cyra}--{\CYRM}{\cyru}{\cyrl}{\cyrt}{\cyro}{\cyrn}{\cyra}} {\cyrp}{\cyrr}{\cyri} {\cyrm}{\cyro}{\cyrd}{\cyre}{\cyrl}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyri} {\cyrt}{\cyre}{\cyrs}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyrb}{\cyrl}{\cyri}{\cyrzh}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {\cyrn}{\cyre}{\cyrb}{\cyre}{\cyrs}{\cyrn}{\cyrery}{\cyrh} {\cyrt}{\cyre}{\cyrl}},
     journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi},
     pages = {13--17},
     publisher = {mathdoc},
     volume = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a1/}
}
TY  - JOUR
AU  - V. V. Abramov
TI  - Исследование устойчивости метода Адамса--Мултона при моделировании тесных сближений небесных тел
JO  - Matematicheskoe Modelirovanie i Kraevye Zadachi
PY  - 2007
SP  - 13
EP  - 17
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a1/
LA  - ru
ID  - MMKZ_2007_3_a1
ER  - 
%0 Journal Article
%A V. V. Abramov
%T Исследование устойчивости метода Адамса--Мултона при моделировании тесных сближений небесных тел
%J Matematicheskoe Modelirovanie i Kraevye Zadachi
%D 2007
%P 13-17
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a1/
%G ru
%F MMKZ_2007_3_a1
V. V. Abramov. Исследование устойчивости метода Адамса--Мултона при моделировании тесных сближений небесных тел. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Tome 3 (2007), pp. 13-17. http://geodesic.mathdoc.fr/item/MMKZ_2007_3_a1/

[1] Kholl Dzh., Uatt Dzh., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979, 312 pp.

[2] Newhall X. X., Standish E., M. Jr., Williams J. G., “DE 102: a numerically integrated ephemeris of the Moon and planets spanning forty-four centuries”, Astron. and Astrophys., 1983, no. 125, 150–167

[3] Abramov V. V., “Primenenie metodov Adamsa k resheniyu uravnenii dvizheniya bolshikh planet, Luny i Solntsa”, Mat. modelirovanie i kraevye zadachi, Tr. Tretei Vseros. nauchn. konf. Ch. 3: Differentsialnye uravneniya i kraevye zadachi, SamGTU, Samara, 2006, 13–19

[4] Zausaev A. F., Zausaev A. A., Olkhin A. G., “Primenenie metoda Everkharta 31-go poryadka dlya resheniya uravnenii dvizheniya bolshikh planet”, Tr. GAISh. VAK-2004, LXXV, 2004, 209–210

[5] Abramov V. V., “Matematicheskoe modelirovanie dvizheniya malykh tel Solnechnoi sistemy na osnove metodov Adamsa”, Vestnik Sam. gos. tekh. unta. Ser.: Fiz.-mat. nauki, 2006, no. 43, 192–194