Краевая задача трехмерной теории упругости
Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 1, Tome 1 (2007), pp. 87-90
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MMKZ_2007_1_a27,
author = {N. G. Gur'yanov and O. N. Tuleneva},
title = {{\CYRK}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyra}{\cyrya} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyra} {\cyrt}{\cyrr}{\cyre}{\cyrh}{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyro}{\cyrishrt} {\cyrt}{\cyre}{\cyro}{\cyrr}{\cyri}{\cyri} {\cyru}{\cyrp}{\cyrr}{\cyru}{\cyrg}{\cyro}{\cyrs}{\cyrt}{\cyri}},
journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi},
pages = {87--90},
year = {2007},
volume = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMKZ_2007_1_a27/}
}
N. G. Gur'yanov; O. N. Tuleneva. Краевая задача трехмерной теории упругости. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 1, Tome 1 (2007), pp. 87-90. http://geodesic.mathdoc.fr/item/MMKZ_2007_1_a27/
[1] Aleksandrov A. Ya, Smirnov Yu. I., Prostranstvennye zadachi teorii uprugosti, Nauka, M., 1978, 482 pp.
[2] Guryanov N. G., “Ob odnom variante resheniya zadachi teorii uprugosti dlya tsilindra”, Izvestiya vuzov. Matematika, 1992, no. 1, 12–16
[3] Guryanov N. G., Tyuleneva O. N., “Nesimmetrichnaya deformatsiya pologo tsilindra”, Nauchno-tekhnich. zhurnal «Georesursy», 2006, no. 1 (18), 13–16
[4] Parton V. Z. Perlin P. I., Metody matematicheskoi teorii uprugosti, Nauka, M., 1981, 688 pp.