Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMKZ_2006_3_a27, author = {O. Yu. Danilkina}, title = {{\CYRN}{\cyre}{\cyrl}{\cyro}{\cyrk}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyra}{\cyrya} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyra} {\cyrs} {\cyri}{\cyrn}{\cyrt}{\cyre}{\cyrg}{\cyrr}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrm} {\cyru}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyri}{\cyre}{\cyrm} {\cyrd}{\cyrl}{\cyrya} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrt}{\cyre}{\cyrp}{\cyrl}{\cyro}{\cyrp}{\cyrr}{\cyro}{\cyrv}{\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri}}, journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi}, pages = {99--101}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMKZ_2006_3_a27/} }
O. Yu. Danilkina. Нелокальная задача с интегральным условием для уравнения теплопроводности. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Third All-Russian Scientific Conference (29–31 May 2006). Part 3, Tome 3 (2006), pp. 99-101. http://geodesic.mathdoc.fr/item/MMKZ_2006_3_a27/
[1] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974