Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMKZ_2006_3_a26, author = {A. Z. Gutov}, title = {{\CYRA}{\cyrn}{\cyra}{\cyrl}{\cyro}{\cyrg} {\cyrf}{\cyro}{\cyrr}{\cyrm}{\cyru}{\cyrl}{\cyrery} {{\CYREREV}{\cyrishrt}{\cyrl}{\cyre}{\cyrr}{\cyra}} {\cyrd}{\cyrl}{\cyrya} {\cyro}{\cyrb}{\cyro}{\cyrb}{\cyrshch}{\cyre}{\cyrn}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrs}{\cyri}{\cyrn}{\cyru}{\cyrs}{\cyra} {\cyri} {\cyro}{\cyrb}{\cyro}{\cyrb}{\cyrshch}{\cyre}{\cyrn}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrk}{\cyro}{\cyrs}{\cyri}{\cyrn}{\cyru}{\cyrs}{\cyra}}, journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi}, pages = {97--98}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMKZ_2006_3_a26/} }
A. Z. Gutov. Аналог формулы Эйлера для обобщенного синуса и обобщенного косинуса. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Third All-Russian Scientific Conference (29–31 May 2006). Part 3, Tome 3 (2006), pp. 97-98. http://geodesic.mathdoc.fr/item/MMKZ_2006_3_a26/
[1] Nakhusheva V. A., Nekotorye klassy differentsialnykh uravnenii matematicheskikh modelei nelokalnykh protsessov, KBNTs RAN, Nalchik, 2002
[2] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966