Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMKZ_2005_3_a7, author = {N. P. Balabaeva}, title = {{\CYRU}{\cyrs}{\cyrt}{\cyro}{\cyrishrt}{\cyrch}{\cyri}{\cyrv}{\cyro}{\cyrs}{\cyrt}{\cyrsftsn} {\cyrn}{\cyre}{\cyrl}{\cyri}{\cyrp}{\cyrsh}{\cyri}{\cyrc}{\cyre}{\cyrv}{\cyrery}{\cyrh} {\cyrd}{\cyri}{\cyrf}{\cyrf}{\cyre}{\cyrr}{\cyre}{\cyrn}{\cyrc}{\cyri}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {\cyrs}~{\cyru}{\cyrp}{\cyrr}{\cyra}{\cyrv}{\cyrl}{\cyre}{\cyrn}{\cyri}{\cyre}{\cyrm}}, journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi}, pages = {31--33}, publisher = {mathdoc}, volume = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMKZ_2005_3_a7/} }
N. P. Balabaeva. Устойчивость нелипшицевых дифференциальных уравнений с~управлением. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Second All-Russian Scientific Conference (1–3 June 2005). Part 3, Tome 3 (2005), pp. 31-33. http://geodesic.mathdoc.fr/item/MMKZ_2005_3_a7/
[1] Grammel G., Maizurna I., “A sufficient condition for the uniform exponential stability of time-varying systems with noise”, Nonlinear Analysis, 56 (2004), 951–960 | DOI
[2] Donchev T., Farkhi E., “Stability and Euler approximation of one-sided Lipschitz differential inclusions”, SIAM J. Control OPTIM, 36:2 (1998), 780–796 | DOI
[3] Filatov O. P., “Ravnomernaya eksponentsialnaya ustoichivost differentsialnykh vklyuchenii”, Vestnik SamGU. Estestvennonauchnaya seriya, 2004, Vtoroi spets. vypusk, 17–24