Метод спуска для монотонных смешанных вариационных неравенств
Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Second All-Russian Scientific Conference (1–3 June 2005). Part 3, Tome 3 (2005), pp. 193-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMKZ_2005_3_a61,
     author = {O. V. Pinyagina},
     title = {{\CYRM}{\cyre}{\cyrt}{\cyro}{\cyrd} {\cyrs}{\cyrp}{\cyru}{\cyrs}{\cyrk}{\cyra} {\cyrd}{\cyrl}{\cyrya} {\cyrm}{\cyro}{\cyrn}{\cyro}{\cyrt}{\cyro}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyrm}{\cyre}{\cyrsh}{\cyra}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrv}{\cyra}{\cyrr}{\cyri}{\cyra}{\cyrc}{\cyri}{\cyro}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrn}{\cyre}{\cyrr}{\cyra}{\cyrv}{\cyre}{\cyrn}{\cyrs}{\cyrt}{\cyrv}},
     journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi},
     pages = {193--194},
     publisher = {mathdoc},
     volume = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMKZ_2005_3_a61/}
}
TY  - JOUR
AU  - O. V. Pinyagina
TI  - Метод спуска для монотонных смешанных вариационных неравенств
JO  - Matematicheskoe Modelirovanie i Kraevye Zadachi
PY  - 2005
SP  - 193
EP  - 194
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMKZ_2005_3_a61/
LA  - ru
ID  - MMKZ_2005_3_a61
ER  - 
%0 Journal Article
%A O. V. Pinyagina
%T Метод спуска для монотонных смешанных вариационных неравенств
%J Matematicheskoe Modelirovanie i Kraevye Zadachi
%D 2005
%P 193-194
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMKZ_2005_3_a61/
%G ru
%F MMKZ_2005_3_a61
O. V. Pinyagina. Метод спуска для монотонных смешанных вариационных неравенств. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Second All-Russian Scientific Conference (1–3 June 2005). Part 3, Tome 3 (2005), pp. 193-194. http://geodesic.mathdoc.fr/item/MMKZ_2005_3_a61/

[1] Duvaut G., Lions J.-L., Les Inequations en Mechanique et Physique, Dunod, Paris, 1972

[2] Patriksson M., Nonlinear Programming and Variational Inequality Problems: a unified approach, Kluwer Academic Publishers, Dordrecht, 1999

[3] Konnov I. V., Kum S., “Descent methods for mixed variational inequalities in a Hilbert space”, Nonlinear Analysis: Theory, Methods and Applications, 47 (2001), 561–572 | DOI

[4] Konnov I. V., Kum S., Lee G. M., “On convergence of descent methods for variational inequalities in a Hilbert space”, Math. Meth. Oper. Res., 55 (2002), 371–382 | DOI