On the generalized Lambert transform
Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Second All-Russian Scientific Conference (1–3 June 2005). Part 3, Tome 3 (2005), pp. 47-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMKZ_2005_3_a12,
     author = {N. A. Virchenko and L. Rybachuk},
     title = {On the generalized {Lambert} transform},
     journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi},
     pages = {47--49},
     publisher = {mathdoc},
     volume = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMKZ_2005_3_a12/}
}
TY  - JOUR
AU  - N. A. Virchenko
AU  - L. Rybachuk
TI  - On the generalized Lambert transform
JO  - Matematicheskoe Modelirovanie i Kraevye Zadachi
PY  - 2005
SP  - 47
EP  - 49
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMKZ_2005_3_a12/
LA  - en
ID  - MMKZ_2005_3_a12
ER  - 
%0 Journal Article
%A N. A. Virchenko
%A L. Rybachuk
%T On the generalized Lambert transform
%J Matematicheskoe Modelirovanie i Kraevye Zadachi
%D 2005
%P 47-49
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMKZ_2005_3_a12/
%G en
%F MMKZ_2005_3_a12
N. A. Virchenko; L. Rybachuk. On the generalized Lambert transform. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Second All-Russian Scientific Conference (1–3 June 2005). Part 3, Tome 3 (2005), pp. 47-49. http://geodesic.mathdoc.fr/item/MMKZ_2005_3_a12/

[1] Virchenko N., “On some generalizations of gamma functions”, Dop. NAS of Ukraine, 1999, no. 10, 39–44

[2] Chaudhry M. Aslam and Zubair Syed M., On a class of incomplete gamma functions with applications, Chapman and Hall/CRC, 2000, 494 pp.

[3] Negrin E. R., “The Lambert transform on $\varepsilon'( I )$”, Portugaliae mathem., 50:3 (1993), 361–363

[4] Titchmarch E. C., Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1948