Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMKZ_2005_1_a83, author = {R. Ph. Phayzullina}, title = {{\CYRO} {\cyrp}{\cyro}{\cyrp}{\cyre}{\cyrr}{\cyre}{\cyrch}{\cyrn}{\cyro}{\cyrm} {\cyri}{\cyrz}{\cyrg}{\cyri}{\cyrb}{\cyre} {\cyrs}{\cyrv}{\cyro}{\cyrb}{\cyro}{\cyrd}{\cyrn}{\cyro} {\cyro}{\cyrp}{\cyre}{\cyrr}{\cyrt}{\cyro}{\cyrishrt} {\cyrp}{\cyrl}{\cyra}{\cyrs}{\cyrt}{\cyri}{\cyrn}{\cyrery}}, journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi}, pages = {281--284}, publisher = {mathdoc}, volume = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMKZ_2005_1_a83/} }
R. Ph. Phayzullina. О поперечном изгибе свободно опертой пластины. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Second All-Russian Scientific Conference (1–3 June 2005). Part 1, Tome 1 (2005), pp. 281-284. http://geodesic.mathdoc.fr/item/MMKZ_2005_1_a83/
[1] Timoshenko S. P., Voinovskii–Kriger S., Plastinki i obolochki, Nauka, M., 1966, 635 pp.
[2] Ryabenkov N. G., “Algoritm asimptoticheskogo integrirovaniya uravnenii teorii uprugosti dlya tonkogo svyazuyuschego sloya”, Tr. VIII mezhvuz. konf-tsii. Ch. 1, Matematicheskoe modelirovanie i kraevye zadachi, SamGTU, Samara, 1998, 125–127 pp.